Skip to main content

Measurement of the T Cell Response to Preerythrocytic Vaccination in Mice

  • Protocol
Malaria Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1325))

Abstract

Whole attenuated parasite vaccines designed to elicit immunity against the clinically silent preerythrocytic stage of Plasmodium infection represent the most efficacious experimental platforms currently in clinical trial. Studies in rodents and humans show that T cells mediate vaccine-induced protection. Thus, determining the quantitative and qualitative properties of these T cells remains a major research focus. Most rodent models of preerythrocytic anti-Plasmodium vaccination focus on circumsporozoite-specific CD8 T cell responses in BALB/c mice. However, CD4 T cells and non-circumsporozoite-specific CD8 T cells also significantly contribute to protection. Here we describe alternative approaches that enable detection and functional characterization of total CD8 and CD4 T cell responses induced by preerythrocytic vaccination in mice. These flow cytometry-based approaches rely on monitoring the modulation of expressed integrins and co-receptors on the surface of T cells in vaccinated mice. The approaches enable direct determination of the magnitude, kinetics, distribution, phenotype, and functional features of T cell responses induced by infection or whole-parasite vaccination using any mouse-parasite species combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M et al (2010) Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med 7, e1000324

    Google Scholar 

  2. World Health Organization (2014) Malaria vaccine rainbow table. http://www.who.int/vaccine_research/links/Rainbow/en/index.html

  3. Clyde DF (1975) Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg 24:397–401

    CAS  PubMed  Google Scholar 

  4. Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP et al (2002) Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 185:1155–1164

    Article  PubMed  Google Scholar 

  5. Epstein JE, Tewari K, Lyke KE, Sim BK, Billingsley PF et al (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 334:475–480

    Article  CAS  PubMed  Google Scholar 

  6. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN et al (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–1365

    Article  CAS  PubMed  Google Scholar 

  7. Spring M, Murphy J, Nielsen R, Dowler M, Bennett JW et al (2013) First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine 31:4975–4983

    Article  PubMed  Google Scholar 

  8. Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN et al (2011) Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377:1770–1776

    Article  CAS  PubMed  Google Scholar 

  9. Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ et al (2009) Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 361:468–477

    Article  CAS  PubMed  Google Scholar 

  10. Bijker EM, Bastiaens GJ, Teirlinck AC, van Gemert GJ, Graumans W et al (2013) Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc Natl Acad Sci U S A 110:7862–7867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Belnoue E, Costa FT, Frankenberg T, Vigario AM, Voza T et al (2004) Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J Immunol 172:2487–2495

    Article  CAS  PubMed  Google Scholar 

  12. Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216:160–162

    Article  CAS  PubMed  Google Scholar 

  13. Tarun AS, Dumpit RF, Camargo N, Labaied M, Liu P et al (2007) Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. J Infect Dis 196:608–616

    Article  CAS  PubMed  Google Scholar 

  14. Nganou-Makamdop K, van Gemert GJ, Arens T, Hermsen CC, Sauerwein RW (2012) Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNgamma responses of hepatic CD8+ memory T cells. PLoS One 7, e36508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schmidt NW, Butler NS, Badovinac VP, Harty JT (2010) Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. PLoS Pathog 6, e1000998

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bijker EM, Teirlinck AC, Schats R, van Gemert GJ, van de Vegte-Bolmer M et al (2014) Cytotoxic markers associate with protection against malaria in human volunteers immunized With Plasmodium falciparum sporozoites. J Infect Dis

    Google Scholar 

  17. Butler NS, Schmidt NW, Harty JT (2010) Differential effector pathways regulate memory CD8 T cell immunity against Plasmodium berghei versus P. yoelii sporozoites. J Immunol 184:2528–2538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cockburn IA, Tse SW, Zavala F (2014) CD8+ T cells eliminate liver-stage Plasmodium berghei parasites without detectable bystander effect. Infect Immun 82:1460–1464

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chakravarty S, Baldeviano GC, Overstreet MG, Zavala F (2008) Effector CD8+ T lymphocytes against liver stages of Plasmodium yoelii do not require gamma interferon for antiparasite activity. Infect Immun 76:3628–3631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Frevert U, Moreno A, Calvo-Calle JM, Klotz C, Nardin E (2009) Imaging effector functions of human cytotoxic CD4+ T cells specific for Plasmodium falciparum circumsporozoite protein. Int J Parasitol 39:119–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Keesen TS, Gomes JA, Fares RC, de Araujo FF, Ferreira KS et al (2012) Characterization of CD4(+) cytotoxic lymphocytes and apoptosis markers induced by Trypanossoma cruzi infection. Scand J Immunol 76:311–319

    Article  CAS  PubMed  Google Scholar 

  22. Purner MB, Berens RL, Nash PB, van Linden A, Ross E et al (1996) CD4-mediated and CD8-mediated cytotoxic and proliferative immune responses to Toxoplasma gondii in seropositive humans. Infect Immun 64:4330–4338

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Renia L, Grillot D, Marussig M, Corradin G, Miltgen F et al (1993) Effector functions of circumsporozoite peptide-primed CD4+ T cell clones against Plasmodium yoelii liver stages. J Immunol 150:1471–1478

    CAS  PubMed  Google Scholar 

  24. Oliveira GA, Kumar KA, Calvo-Calle JM, Othoro C, Altszuler D et al (2008) Class II-restricted protective immunity induced by malaria sporozoites. Infect Immun 76:1200–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Overstreet MG, Chen YC, Cockburn IA, Tse SW, Zavala F (2011) CD4+ T cells modulate expansion and survival but not functional properties of effector and memory CD8+ T cells induced by malaria sporozoites. PLoS One 6, e15948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Weiss WR, Berzofsky JA, Houghten RA, Sedegah M, Hollindale M et al (1992) A T cell clone directed at the circumsporozoite protein which protects mice against both Plasmodium yoelii and Plasmodium berghei. J Immunol 149:2103–2109

    CAS  PubMed  Google Scholar 

  27. Sano G, Hafalla JC, Morrot A, Abe R, Lafaille JJ et al (2001) Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. J Exp Med 194:173–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sponaas AM, Cadman ET, Voisine C, Harrison V, Boonstra A et al (2006) Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J Exp Med 203:1427–1433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Stephens R, Albano FR, Quin S, Pascal BJ, Harrison V et al (2005) Malaria-specific transgenic CD4(+) T cells protect immunodeficient mice from lethal infection and demonstrate requirement for a protective threshold of antibody production for parasite clearance. Blood 106:1676–1684

    Article  CAS  PubMed  Google Scholar 

  30. Stephens R, Langhorne J (2010) Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS Pathog 6, e1001208

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lau LS, Fernandez-Ruiz D, Mollard V, Sturm A, Neller MA et al (2014) CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria. PLoS Pathog 10, e1004135

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chen YC, Zavala F (2013) Development and use of TCR transgenic mice for malaria immunology research. Methods Mol Biol 923:481–491

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt NW, Butler NS, Harty JT (2011) Plasmodium-host interactions directly influence the threshold of memory CD8 T cells required for protective immunity. J Immunol 186:5873–5884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Schmidt NW, Podyminogin RL, Butler NS, Badovinac VP, Tucker BJ et al (2008) Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci U S A 105:14017–14022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC et al (2006) The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444:937–940

    Article  CAS  PubMed  Google Scholar 

  36. Mauduit M, Gruner AC, Tewari R, Depinay N, Kayibanda M et al (2009) A role for immune responses against non-CS components in the cross-species protection induced by immunization with irradiated malaria sporozoites. PLoS One 4, e7717

    Article  PubMed Central  PubMed  Google Scholar 

  37. Berenzon D, Schwenk RJ, Letellier L, Guebre-Xabier M, Williams J et al (2003) Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. J Immunol 171:2024–2034

    Article  CAS  PubMed  Google Scholar 

  38. Jobe O, Lumsden J, Mueller AK, Williams J, Silva-Rivera H et al (2007) Genetically attenuated Plasmodium berghei liver stages induce sterile protracted protection that is mediated by major histocompatibility complex Class I-dependent interferon-gamma-producing CD8+ T cells. J Infect Dis 196:599–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Krzych U, Dalai S, Zarling S, Pichugin A (2012) Memory CD8 T cells specific for plasmodia liver-stage antigens maintain protracted protection against malaria. Front Immunol 3:370

    Article  PubMed Central  PubMed  Google Scholar 

  40. Zarling S, Berenzon D, Dalai S, Liepinsh D, Steers N et al (2013) The survival of memory CD8 T cells that is mediated by IL-15 correlates with sustained protection against malaria. J Immunol 190:5128–5141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12:180–190

    CAS  PubMed  Google Scholar 

  42. Akue AD, Lee JY, Jameson SC (2012) Derivation and maintenance of virtual memory CD8 T cells. J Immunol 188:2516–2523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK et al (2012) Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol 13:188–195

    Article  CAS  Google Scholar 

  44. Rai D, Pham NL, Harty JT, Badovinac VP (2009) Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J Immunol 183:7672–7681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. McDermott DS, Varga SM (2011) Quantifying antigen-specific CD4 T cells during a viral infection: CD4 T cell responses are larger than we think. J Immunol 187:5568–5576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Renia L, Gruner AC, Mauduit M, Snounou G (2013) Vaccination using normal live sporozoites under drug treatment. Methods Mol Biol 923:567–576

    Article  CAS  PubMed  Google Scholar 

  47. Vaughan AM, Kappe SH (2013) Vaccination using radiation- or genetically attenuated live sporozoites. Methods Mol Biol 923:549–566

    Article  CAS  PubMed  Google Scholar 

  48. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Bottcher S et al (2012) EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26:1986–2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank current members of the Butler Laboratory for their critical reading of the manuscript and many helpful discussions. Work in the Butler Laboratory is supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health through grant number 5K22AI099070, the National Institute of General Medical Sciences of the National Institutes of Health through Grant Number 8P20GM103447, and the American Heart Association through grant number 13BGIA17140002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah S. Butler Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guthmiller, J.J., Zander, R.A., Butler, N.S. (2015). Measurement of the T Cell Response to Preerythrocytic Vaccination in Mice. In: Vaughan, A. (eds) Malaria Vaccines. Methods in Molecular Biology, vol 1325. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2815-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2815-6_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2814-9

  • Online ISBN: 978-1-4939-2815-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics