Skip to main content

Functional Milk Proteins: Production and Utilization—Whey-Based Ingredients

  • Chapter
Advanced Dairy Chemistry

Abstract

Historically, whey was considered to have very little value by the dairy industry. However whey contains about 50 % of the total solids of milk, including almost 100 % of the lactose and about 20 % of the total protein. The excellent nutritional value of whey proteins and the enhanced functional properties of whey-based ingredients have now been widely recognised. Over the years, advancements in science and technology have transformed whey from a troublesome waste product to valuable dairy ingredients. Whey is no longer a ‘by-product’, but is rather seen as a valuable ‘co-product’ of cheese making and casein production. This chapter focuses on various unit operations that are commonly utilised for concentration, fractionation and dehydration of whey-based ingredients. The composition and application of whey-based ingredients such as whey powders, whey protein concentrates, whey protein isolate and whey protein fractions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlerova L, Bartoskova A, Faldyna M (2008) Lactoferrin: a review. Vet Med (Praha) 53:457–468

    CAS  Google Scholar 

  • Aldrich ND, Reicks MM, Sibley SD, Redmon JB, Thomas W, Raatz SK (2011) Varying protein source and quantity do not significantly improve weight loss, fat loss, or satiety in reduced energy diets among midlife adults. Nutr Res 31:104–112

    Article  CAS  Google Scholar 

  • Althouse PJ, Dinakar P, Kilara A (1995) Screening of proteolytic enzymes to enhance foaming of whey protein isolates. J Food Sci 60:1110–1112

    Article  CAS  Google Scholar 

  • Alvarez-Guerra E, Irabien A (2012) Extraction of lactoferrin with hydrophobic ionic liquids. Sep Purif Technol 98:432–440

    Article  CAS  Google Scholar 

  • Andersson J, Mattiasson B (2006) Simulated moving bed technology with a simplified approach for protein purification: separation of lactoperoxidase and lactoferrin from whey protein concentrate. J Chromatogr A 1107:88–95

    Article  CAS  Google Scholar 

  • Aschaffenburg R, Drewry J (1957) Improved method for the preparation of crystalline beta-lactoglobulin and alpha-lactalbumin from cows milk. Biochem J 65:273–277

    Article  CAS  Google Scholar 

  • Ayers JS, Petersen MJ (1985) Whey-protein recovery using a range of novel ion-exchangers. N Z J Dairy Sci 20:129–142

    CAS  Google Scholar 

  • Barrantes E, Tamime AY, Muir DD, Sword AM (1994) The effect of substitution of fat by microparticulate whey protein on the quality of set-type, natural yogurt. Int J Dairy Technol 47:61–68

    Article  CAS  Google Scholar 

  • Bazinet L (2005) Electrodialytic phenomena and their applications in the dairy industry: a review. Crit Rev Food Sci Nutr 44:525–544

    Article  Google Scholar 

  • Bhandari B (2012) Mechanism of stickiness of dairy powders during processing and handling. Proceedings of Fifth International Symposium on Spray Dried Dairy Products, St. Malo, 19–21 June 2012

    Google Scholar 

  • Bhandari B, Patel K, Chen XD (2008) Spray drying of food materials: process and product characteristics. In: Chen XD, Mujumdar AS (eds) Drying technologies in food processing. Blackwell, Oxford, pp 113–159

    Google Scholar 

  • Billakanti JM, Fee CJ (2009) Characterization of cryogel monoliths for extraction of minor proteins from milk by cation exchange. Biotechnol Bioeng 103:1155–1163

    Article  CAS  Google Scholar 

  • Blomkalns AL, Gomez MR (1997) Purification of bovine α-lactalbumin by immobilized metal ion affinity chromatography. Prep Biochem Biotechnol 27:219–226

    Article  CAS  Google Scholar 

  • Blomstrand E, Eliasson J, Karlsson HKR, Köhnke R (2006) Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136:269S–273S

    CAS  Google Scholar 

  • Boland M (2011) Whey proteins. In: Phillips GO, Williams PA (eds) Handbook of food proteins. Woodhead, Cambridge, pp 30–55

    Chapter  Google Scholar 

  • Bonnaillie LM, Tomasula PM (2009) Whey protein fractionation. In: Onwulata C, Huth P (eds) Whey processing, functionality and health benefits. Wiley, Iowa, pp 15–38

    Google Scholar 

  • Bottomley RC, Evans MTA, Parkinson CJ (1990) Whey proteins. In: Harris P (ed) Food gels. Elsevier, London, pp 435–466

    Chapter  Google Scholar 

  • Boynton RD, Novakovic AM (2013) Industry evaluations of the status and prospects for the burgeoning New York Greek-style Yogurt Industry. Program on Dairy Markets and Policy Research Paper Series RP13-01:1–52

    Google Scholar 

  • Bylund GS (2003) Dairy processing handbook. Tetra Pak Processing Systems AB, Lund

    Google Scholar 

  • Caillard R, Boutin Y, Subirade M (2011) Characterization of succinylated β-lactoglobulin and its application as the excipient in novel delayed release tablets. Int Dairy J 21:27–33

    Article  CAS  Google Scholar 

  • Caillard R, Guillet-Nicolas R, Kleitz F, Subirade M (2012) Tabletability of whey protein isolates. Int Dairy J 27:92–98

    Article  CAS  Google Scholar 

  • Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237

    Article  CAS  Google Scholar 

  • Chaplin LC (1986) Hydrophobic interaction fast protein liquid-chromatography of milk-proteins. J Chromatogr 363:329–335

    Article  CAS  Google Scholar 

  • Cheftel JC, Dumay E (1993) Microcoagulation of proteins for development of “creaminess”. Food Rev Int 9:473–502

    Article  CAS  Google Scholar 

  • Chobert JM, Bertrandharb C, Nicolas MG (1988) Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J Agric Food Chem 36:883–892

    Article  CAS  Google Scholar 

  • Dalgalarrondo M, Dufour E, Chobert JM, Bertrandharb C, Haertle T (1995) Proteolysis of beta-lactoglobulin and beta-casein by pepsin in ethanolic media. Int Dairy J 5:1–14

    Article  CAS  Google Scholar 

  • Dangaran K, Krochta JM (2009) Whey protein films and coatings. In: Onwulata C, Huth PJ (eds) Whey processing, functionality and health benefits. Wiley, Iowa, pp 133–167

    Google Scholar 

  • de Wit JN (2001) Lecturer’s handbook on whey and whey products. European Whey Products Association, Brussels

    Google Scholar 

  • Decoteau E, Yurchak AM, Partridge REH, Tomasi TB (1972) Lactoferrin in synovial fluid of patients with inflammatory arthritis. Arthritis Rheum 15:324–325

    Article  CAS  Google Scholar 

  • Deeth HC, Hartanto J (2009) Chemistry of milk—role of constituents in evaporation and drying. In: Tamime AY (ed) Dairy powders and concentrated products. Wiley, Oxford, pp 1–27

    Chapter  Google Scholar 

  • Delgado-Andrade C, Rufián-Henares JA, Jiménez-Pérez S, Morales FJ (2006) Tryptophan determination in milk-based ingredients and dried sport supplements by liquid chromatography with fluorescence detection. Food Chem 98:580–585

    Article  CAS  Google Scholar 

  • Dissanayake M, Vasiljevic T (2009) Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J Dairy Sci 92:1387–1397

    Article  CAS  Google Scholar 

  • Doultani S, Turhan KN, Etzel MR (2003) Whey protein isolate and glyco-macropeptide recovery from whey using ion exchange chromatography. J Food Sci 68:1389–1395

    Article  CAS  Google Scholar 

  • Doherty SB, Gee VL, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A (2011) Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll 25:1604–1617

    Google Scholar 

  • Doherty SB, Auty MA, Stanton C, Ross RP, Fitzgerald GF, Brodkorb A (2012) Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. Int Dairy J 22:31–43

    Google Scholar 

  • Du Q-Y, Lin D-Q, Xiong Z-S, Yao S-J (2013) One-step purification of lactoferrin from crude sweet whey using cation-exchange expanded bed adsorption. Ind Eng Chem Res 52:2693–2699

    Article  CAS  Google Scholar 

  • Durham RJ, Hourigan JA (2007) Waste management and co-product recovery in dairy processing. In: Waldron K (ed) Handbook of waste management and co-product recovery in food processing. Woodhead, Cambridge, pp 332–387

    Chapter  Google Scholar 

  • Eliassen LT, Berge G, Sveinbjornsson B, Svendsen JS, Vorland LH, Rekdal O (2002) Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res 22:2703–2710

    CAS  Google Scholar 

  • Etzel MR (2004) Manufacture and use of dairy protein fractions. J Nutr 134:996S–1002S

    CAS  Google Scholar 

  • Fang Z, Bhandari B (2012) Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res Int 48:478–483

    Article  CAS  Google Scholar 

  • Farnfield MM, Trenerry C, Carey KA, Cameron-Smith D (2009) Plasma amino acid response after ingestion of different whey protein fractions. Int J Food Sci Nutr 60:476–486

    Article  CAS  Google Scholar 

  • Fee CJ, Chand A (2006) Capture of lactoferrin and lactoperoxidase from raw whole milk by cation exchange chromatography. Sep Purif Technol 48:143–149

    Article  CAS  Google Scholar 

  • Fernandez-Pan I, Mendoza M, Mate JI (2013) Whey protein isolate edible films with essential oils incorporated to improve the microbial quality of poultry. J Sci Food Agric 93:2986–2994

    Article  CAS  Google Scholar 

  • Foegeding EA, Luck P, Vardhanabhuti B (2011) Milk protein products|whey protein products. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Academic, San Diego, pp 873–878

    Chapter  Google Scholar 

  • Fox KK, Holsinge VH, Posati LP, Pallansc MJ (1967) Separation of beta-lactoglobulin from other milk serum proteins by trichloroacetic acid. J Dairy Sci 50:1363–1367

    Article  CAS  Google Scholar 

  • Fox PF (2011) Milk|introduction. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Academic, San Diego, pp 458–466

    Chapter  Google Scholar 

  • García-Garibay M, Jiménez-Guzmán J, Hernández-Sánchez H (2008) Whey proteins: bioengineering and health. In: Gutiérrez-López G, Barbosa-Cánovas G, Welti-Chanes J, Parada-Arias E (eds) Food engineering: integrated approaches. Springer, New York, pp 415–430

    Chapter  Google Scholar 

  • Gauthier SF, Paquin P, Pouliot Y, Turgeon S (1993) Surface activity and related functional properties of peptides obtained from whey proteins. J Dairy Sci 76:321–328

    Article  CAS  Google Scholar 

  • Gernigon G, Schuck P, Jeantet R, Burling H (2011) Whey processing|demineralization. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Academic, San Diego, pp 738–743

    Chapter  Google Scholar 

  • Gesan-Guiziou G (2010) Separation technologies in dairy and egg processing. In: Rizvi SSH (ed) Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Woodhead, Cambridge, pp 341–380

    Google Scholar 

  • Gillies MT (1974) Whey processing and utilization: economic and technical aspects. Noyes Data Corporation, Park Ridge

    Google Scholar 

  • Grandison AS, Lewis MJ (1996) Separation processes in the food and biotechnology industries—principles and applications. Woodhead, Cambridge

    Book  Google Scholar 

  • Greiter M, Novalin S, Wendland M, Kulbe K-D, Fischer J (2002) Desalination of whey by electrodialysis and ion exchange resins: analysis of both processes with regard to sustainability by calculating their cumulative energy demand. J Membr Sci 210:91–102

    Article  CAS  Google Scholar 

  • Grinstead GS, Goodband RD, Nelssen JL, Tokach MD, Dritz SS (2000) A review of whey processing, products and components: Effects on weanling pig performance. J Appl Anim Res 17:133–150

    Article  Google Scholar 

  • Guadix A, Camacho F, Guadix EM (2006) Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor. J Food Eng 72:398–405

    Article  CAS  Google Scholar 

  • Gunasekaran S (2009) Whey protein hydrogels and nanoparticles for encapsulation and controlled delivery of bioactive compounds. In: Onwulata C, Huth P (eds) Whey processing, functionality and health benefits. Wiley, Iowa, pp 227–284

    Google Scholar 

  • Gunasekaran S, Xiao L, Eleya MMO (2006) Whey protein concentrate hydrogels as bioactive carriers. J App Polym Sci 99:2470–2476

    Google Scholar 

  • Gunasekaran S, Ko S, Xiao L (2007) Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng 83:31–40

    Google Scholar 

  • Guo MR, Fox PF, Flynn A, Kindstedt PS (1995) Susceptibility of beta-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J Dairy Sci 78:2336–2344

    Article  CAS  Google Scholar 

  • Hahn R, Schulz PM, Schaupp C, Jungbauer A (1998) Bovine whey fractionation based on cation-exchange chromatography. J Chromatogr A 795:277–287

    Article  CAS  Google Scholar 

  • Hill RD, Zadow JG (1974) The precipitation of whey proteins by carboxymethyl cellulose of differing degrees of substitution. J Dairy Res 41:373–380

    Article  CAS  Google Scholar 

  • Hobman PG (1992) Ultrafiltration and manufacture of whey protein concentrates. In: Zadow JG (ed) Whey and lactose processing. Elsevier, London, pp 195–230

    Chapter  Google Scholar 

  • Hoppe GK, Higgins JJ (1992) Demineralization. In: Zadow JG (ed) Whey and lactose processing. Elsevier, London, pp 91–131

    Chapter  Google Scholar 

  • Houldsworth DW (1980) Demineralization of whey by means of ion exchange and electrodialysis. Int J Dairy Technol 33:45–51

    Article  CAS  Google Scholar 

  • Huffman LM, de Barros Ferreira L (2011) Whey-based ingredients. In: Chandan RC, Kilara A (eds) Dairy ingredients for food processing. Wiley, Iowa, pp 179–198

    Chapter  Google Scholar 

  • Imtiaz-Ul-Islam M, Hong L, Langrish T (2011) CO2 capture using whey protein isolate. Chem Eng J 171:1069–1081

    Article  CAS  Google Scholar 

  • Iordache M, Jelen P (2003) High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innovative Food Sci Emerg Technol 4:367–376

    Article  CAS  Google Scholar 

  • Janjarasskul T, Min SC, Krochta JM (2013) Triggering mechanisms for oxygen-scavenging function of ascorbic acid-incorporated whey protein isolate films. J Sci Food Agric 93:2939–2944

    Article  CAS  Google Scholar 

  • Jeantet R, Rodriguez J, Garem A (2000) Nanofiltration of sweet whey by spiral wound organic membranes: impact of hydrodynamics. Lait 80:155–163

    Article  CAS  Google Scholar 

  • Jelen P (2009) Dried whey, whey proteins, lactose and lactose derivative products. In: Tamime AY (ed) Dairy powders and concentrated products. Wiley, Chichester, pp 255–267

    Chapter  Google Scholar 

  • Ju ZY, Otte J, Madsen JS, Qvist KB (1995) Effects of limited proteolysis on gelation and gel properties of whey protein isolate. J Dairy Sci 78:2119–2128

    Article  CAS  Google Scholar 

  • Kawamata T, Tooyama I, Yamada T, Walker DG, McGeer PL (1993) Lactotransferrin immunocytochemistry in Alzheimer and normal human brain. Am J Pathol 142:1574–1585

    CAS  Google Scholar 

  • Kelly PM, Kelly J, Mehra R, Oldfield DJ, Raggett E, O’Kennedy BT (2000) Implementation of integrated membrane processes for pilot scale development of fractionated milk components. Lait 80:139–153

    Article  CAS  Google Scholar 

  • Kilara A (2009) Whey and whey products. In: Chandan RC (ed) Dairy processing & quality assurance. Wiley, Iowa, pp 337–355

    Chapter  Google Scholar 

  • Killara A, Vaghela MN (2004) Whey proteins. In: Yada RY (ed) Proteins in food processing. Woodhead, Cambridge, pp 72–99

    Chapter  Google Scholar 

  • Konrad G, Kleinschmidt T (2008) A new method for isolation of native α-lactalbumin from sweet whey. Int Dairy J 18:47–54

    Article  CAS  Google Scholar 

  • Konrad G, Lieske B, Faber W (2000) A large-scale isolation of native beta-lactoglobulin: characterization of physicochemical properties and comparison with other methods. Int Dairy J 10:713–721

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  • Krissansen GW (2007) Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr 26:713S–723S

    Article  CAS  Google Scholar 

  • Kuehler CA, Stine CM (1974) Effect of enzymatic hydrolysis on some functional properties of whey protein. J Food Sci 39:379–382

    Article  CAS  Google Scholar 

  • Kuipers BJH, Alting AC, Gruppen H (2007) Comparison of the aggregation behavior of soy and bovine whey protein hydrolysates. Biotechnol Adv 25:606–610

    Article  CAS  Google Scholar 

  • Lan Q, Bassi A, Zhu J-X, Margaritis A (2002) Continuous protein recovery from whey using liquid-solid circulating fluidized bed ion-exchange extraction. Biotechnol Bioeng 78:157–163

    Article  CAS  Google Scholar 

  • Lisak K, Toro-Sierra J, Kulozik U, Božanić R, Cheison SC (2013) Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: potential for native α-lactalbumin purification. J Dairy Res 80:14–20

    Article  CAS  Google Scholar 

  • Lu RR, Xu SY, Wang Z, Yang RJ (2007) Isolation of lactoferrin from bovine colostrum by ultrafiltration coupled with strong cation exchange chromatography on a production scale. J Membr Sci 297:152–161

    Article  CAS  Google Scholar 

  • Luhovyy BL, Akhavan T, Anderson GH (2007) Whey proteins in the regulation of food intake and satiety. J Am Coll Nutr 26:704S–712S

    Article  CAS  Google Scholar 

  • Manso MA, López-Fandiño R (2004) k-Casein macropeptides from cheese whey: physicochemical, biological, nutritional, and technological features for possible uses. Food Rev Int 20:329–355

    Article  CAS  Google Scholar 

  • Marcelo PA, Rizvi SSH (2008) Physicochemical properties of liquid virgin whey protein isolate. Int Dairy J 18:236–246

    Article  CAS  Google Scholar 

  • Marwaha SS, Kennedy JF (1988) Whey—pollution problem and potential utilization. Int J Food Sci Technol 23:323–336

    Article  Google Scholar 

  • McClements DJ (2009) Whey protein-stabilized emulsions. In: Onwulata C, Huth P (eds) Whey processing, functionality and health benefits. Wiley, Iowa, pp 63–97

    Google Scholar 

  • McHugh TH, Aujard JF, Krochta JM (1994) Plasticized whey protein edible films: water vapor permeability properties. J Food Sci 59:416–419

    Article  CAS  Google Scholar 

  • McIntosh GH, Royle PJ, Le Leu RK, Regester GO, Johnson MA, Grinsted RL, Kenward RS, Smithers GW (1998) Whey proteins as functional food ingredients? Int Dairy J 8:425–434

    Article  CAS  Google Scholar 

  • Mehra RK, Donnelly WJ (1993) Fractionation of whey protein components through a large pore size, hydrophilic, cellulosic membrane. J Dairy Res 60:89–97

    Article  CAS  Google Scholar 

  • Melachouris N (1984) Critical aspects in development of whey protein concentrate. J Dairy Sci 67:2693–2700

    Article  CAS  Google Scholar 

  • Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8:228–237

    Article  CAS  Google Scholar 

  • Mitsuda H, Kawa F, Yamamoto A, Nakajima K (1975) Carbon dioxide-protein interaction in a gas-solid phase. J Nutr Sci Vitaminol 21:151–162

    Article  CAS  Google Scholar 

  • Mleko S, Janas P, Wang T, Lucey JA (2003) Rheological properties of reduced lactose whey dispersions. Int J Dairy Technol 56:157–161

    Article  CAS  Google Scholar 

  • Morr CV, Ha EYW (1993) Whey protein concentrates and isolates: processing and functional properties. Crit Rev Food Sci Nutr 33:431–476

    Article  CAS  Google Scholar 

  • Muir DD, Tamime AY, Shenana ME, Dawood AH (1999) Processed cheese analogues incorporating fat-substitutes 1. Composition, microbiological quality and flavour changes during storage at 5°C. LWT—Food Sci Technol 32:41–49

    Article  CAS  Google Scholar 

  • Mulvihill DM, Ennis MP (2003) Functional milk proteins: production and utilization. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry—proteins, 3rd edn. Springer, New York, pp 1175–1228

    Chapter  Google Scholar 

  • Musale DA, Kulkarni SS (1998) Effect of whey composition on ultrafiltration performance. J Agric Food Chem 46:4717–4722

    Article  CAS  Google Scholar 

  • Mutilangi WAM, Panyam D, Kilara A (1996) Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. J Food Sci 61:270–275

    Article  CAS  Google Scholar 

  • Neyestani TR, Djalali M, Pezeshki M (2003) Isolation of α-lactalbumin, β-lactoglobulin, and bovine serum albumin from cow’s milk using gel filtration and anion-exchange chromatography including evaluation of their antigenicity. Protein Expr Purif 29:202–208

    Article  CAS  Google Scholar 

  • O’Regan J, Ennis MP, Mulvihill DM (2009) Milk proteins. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC, Boca Raton, pp 298–358

    Chapter  Google Scholar 

  • Onwulata C, Huth P (2008) Whey processing, functionality and health benefits. Wiley, Iowa

    Book  Google Scholar 

  • Ortin A, Cebrian JA, Johansson G (1992) Large-scale extraction of alpha-lactalbumin and beta-lactoglobulin from bovine whey by precipitation with polyethylene-glycol and partitioning in aqueous 2-phase systems. Prep Biochem 22:53–66

    CAS  Google Scholar 

  • Otani H (1981) Susceptibility of s carboxy methylated beta lacto globulin to peptic tryptic and chymotryptic digestions. Jpn J Zootech Sci 52:689–691

    CAS  Google Scholar 

  • Palmer DE (1977) High-purity protein recovery. Process Biochem 12(24–26):28

    Google Scholar 

  • Paquin P, Lebeuf Y, Richard JP, Kalab M (1993) Microparticulation of milk-proteins by high-pressure homogenization to produce a fat substitute, Special issue 9303. IDF, Brussels, pp 389–396

    Google Scholar 

  • Pearce RJ (1983) Thermal separation of beta-lactoglobulin and alpha-lactalbumin in bovine cheddar cheese whey. Aust J Dairy Technol 38:144–148

    CAS  Google Scholar 

  • Pearce RJ (1992a) Whey processing. In: Zadow JG (ed) Whey and lactose processing. Elsevier, London, pp 73–89

    Chapter  Google Scholar 

  • Pearce RJ (1992b) Whey protein recovery and whey protein fractionation. In: Zadow JG (ed) Whey and lactose processing. Elsevier, London, pp 271–316

    Chapter  Google Scholar 

  • Pihlanto A, Korhonen H (2003) Bioactive peptides and proteins. Adv Food Nutr Res 47:175–276

    Article  CAS  Google Scholar 

  • Písecký J (2005) Spray drying in the cheese industry. Int Dairy J 15:531–536

    Article  Google Scholar 

  • Poppitt SD, Proctor J, McGill A-T, Wiessing KR, Falk S, Xin L, Budgett SC, Darragh A, Hall RS (2011) Low-dose whey protein-enriched water beverages alter satiety in a study of overweight women. Appetite 56:456–464

    Article  CAS  Google Scholar 

  • Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281

    Article  CAS  Google Scholar 

  • Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    Article  CAS  Google Scholar 

  • Poulin J-F, Caillard R, Subirade M (2011) β-Lactoglobulin tablets as a suitable vehicle for protection and intestinal delivery of probiotic bacteria. Int J Pharm 405:47–54

    Article  CAS  Google Scholar 

  • Pouliot Y, Wijers MC, Gauthier SF, Nadeau L (1999) Fractionation of whey protein hydrolysates using charged UF/NF membranes. J Membr Sci 158:105–114

    Article  CAS  Google Scholar 

  • Queguiner C, Dumay E, Salou-Cavalier C, Cheftel JC (1992) Microcoagulation of a whey protein isolate by extrusion cooking at acid pH. J Food Sci 57:610–616

    Article  CAS  Google Scholar 

  • Ramchandran L, Vasiljevic T (2013) Whey processing. In: Tamime AY (ed) Membrane processing: dairy and beverage applications. Blackwell, Oxford, pp 193–207

    Google Scholar 

  • Ramos ÓL, Silva SI, Soares JC, Fernandes JC, Poças MF, Pintado ME, Malcata FX (2012) Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Res Int 45:351–361

    Article  CAS  Google Scholar 

  • Recio I, Slangen CJ, Visser S (2000) Method for the production of antibacterial peptides from biological fluids at an ionic membrane. Application to the isolation of nisin and caprine lactoferricin. Lait 80:187–195

    Article  CAS  Google Scholar 

  • Renard D, Robert P, Faucheron S, Sanchez C (1999) Rheological properties of mixed gels made of microparticulated whey proteins and β-lactoglobulin. Colloids Surf B 12:113–121

    Article  CAS  Google Scholar 

  • Remondetto GE, Beyssac E, Subirade M (2004) Iron availability from whey protein hydrogels: an in vitro study. J Agric Food Chem 52:8137–8143

    Google Scholar 

  • Roberts AK, Chierici R, Sawatzki G, Hill MJ, Volpato S, Vigi V (1992) Supplementation of an adapted formula with bovine lactoferrin: 1. Effect on the infant faecal flora. Acta Pædiatr 81:119–124

    Article  CAS  Google Scholar 

  • Saksena S, Zydney AL (1994) Effect of solution pH and ionic strength on the separation of albumin from immunoglobulins (IgG) by selective filtration. Biotechnol Bioeng 43:960–968

    Article  CAS  Google Scholar 

  • Salvador C, Lu D, Anthony EJ, Abanades JC (2003) Enhancement of CaO for CO2 capture in an FBC environment. Chem Eng J 96:187–195

    Article  CAS  Google Scholar 

  • Sanchez C, Pouliot M, Gauthier SF, Paquin P (1997) Thermal aggregation of whey protein isolate containing microparticulated or hydrolyzed whey proteins. J Agric Food Chem 45:2384–2392

    Article  CAS  Google Scholar 

  • Sandström O, Lönnerdal B, Graverholt G, Hernell O (2008) Effects of α-lactalbumin–enriched formula containing different concentrations of glycomacropeptide on infant nutrition. Am J Clin Nutr 87:921–928

    Google Scholar 

  • Santos MJ, Teixeira JA, Rodrigues LR (2011) Fractionation and recovery of whey proteins by hydrophobic interaction chromatography. J Chromatogr B 879:475–479

    Article  CAS  Google Scholar 

  • Schmidt DG, Poll JK (1991) Enzymatic-hydrolysis of whey proteins—hydrolysis of alpha-lactalbumin and beta-lactoglobulin in buffer solutions by proteolytic-enzymes. Neth Milk Dairy J 45:225–240

    CAS  Google Scholar 

  • Severin S, Xia WS (2006) Enzymatic hydrolysis of whey proteins by two different proteases and their effect on the functional properties of resulting protein hydrolysates. J Food Biochem 30:77–97

    Article  CAS  Google Scholar 

  • Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39:639–644

    Article  CAS  Google Scholar 

  • Shah NP (2000) Effects of milk-derived bioactives: an overview. Br J Nutr 84:S3–S10

    Article  CAS  Google Scholar 

  • Sharan M, Singh MP (1985) Numerical simulation of pulmonary O2 and CO2 exchange. Int J Biomed Comput 16:59–80

    Article  CAS  Google Scholar 

  • Silvestre MPC (1997) Review of methods for the analysis of protein hydrolysates. Food Chem 60:263–271

    Article  CAS  Google Scholar 

  • Singer NS, Dunn JM (1990) Protein microparticulation: the principle and the process. J Am Coll Nutr 9:388–397

    Article  CAS  Google Scholar 

  • Singh AM, Dalgleish DG (1998) The emulsifying properties of hydrolyzates of whey proteins. J Dairy Sci 81:918–924

    Article  CAS  Google Scholar 

  • Singh H (2011) Aspects of milk-protein-stabilised emulsions. Food Hydrocoll 25:1938–1944

    Article  CAS  Google Scholar 

  • Sinha R, Radha C, Prakash J, Kaul P (2007) Whey protein hydrolysate: functional properties, nutritional quality and utilization in beverage formulation. Food Chem 101:1484–1491

    Article  CAS  Google Scholar 

  • Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  • Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18:695–704

    Article  CAS  Google Scholar 

  • Spiegel T (1999) Whey protein aggregation under shear conditions—effects of lactose and heating temperature on aggregate size and structure. Int J Food Sci Technol 34:523–531

    Article  CAS  Google Scholar 

  • Spiegel T, Huss M (2002) Whey protein aggregation under shear conditions—effects of pH-value and removal of calcium. Int J Food Sci Technol 37:559–568

    Article  CAS  Google Scholar 

  • Spiegel T, Kessler HG (1998) Continuous formation of gel structures and stable foams based on a heat treated and acidulated whey protein concentrate. Texture of fermented milk products and dairy desserts. Proceedings of IDF symposium, Italy, 5–6 May 1997, pp 106–114

    Google Scholar 

  • Steventon AJ, Donald AM, Gladen LF (1994) Thermal aggregation of whey proteins under fluid shear conditions. In: Andrews AT, Varley J (eds) Biochemistry of milk products. The Royal Society of Chemistry, London, pp 133–142

    Google Scholar 

  • Sugi K, Saitoh O, Hirata I, Katsu K (1996) Fecal lactoferrin as a marker for disease activity in inflammatory bowel disease: comparison with other neutrophil-derived proteins. Am J Gastroenterol 91:927–934

    CAS  Google Scholar 

  • Svenning C, Brynhildsvold J, Molland T, Langsrud T, Vegarud GE (2000) Antigenic response of whey proteins and genetic variants of beta-lactoglobulin—the effect of proteolysis and processing. Int Dairy J 10:699–711

    Article  CAS  Google Scholar 

  • Tamime AY, KalÁB M, Muir DD, Barrantes E (1995) The microstructure of set-style, natural yogurt made by substituting microparticulate whey protein for milk fat. Int J Dairy Technol 48:107–111

    Article  CAS  Google Scholar 

  • Thomas MEC, Scher J, Desobry-Banon S, Desobry S (2004) Milk powders ageing: effect on physical and functional properties. Crit Rev Food Sci Nutr 44:297–322

    Article  CAS  Google Scholar 

  • Tolkach A, Steinle S, Kulozik U (2005) Optimization of thermal pretreatment conditions for the separation of native alpha-lactalbumin from whey protein concentrates by means of selective denaturation of beta-lactoglobulin. J Food Sci 70:E557–E566

    Article  CAS  Google Scholar 

  • Trabulsi J, Capeding R, Lebumfacil J, Ramanujam K, Feng P, McSweeney S, Harris B, DeRusso P (2011) Effect of an alpha-lactalbumin-enriched infant formula with lower protein on growth. Eur J Clin Nutr 65:167–174

    Article  CAS  Google Scholar 

  • Tunick MH (2008) Whey protein production and utilization: a brief history. In: Onwulata C, Huth P (eds) Whey processing, functionality and health benefits. Wiley, Iowa, pp 1–13

    Chapter  Google Scholar 

  • Turhan KN, Etzel MR (2004) Whey protein isolate and α-lactalbumin recovery from lactic acid whey using cation-exchange chromatography. J Food Sci 69(2):66–70

    Google Scholar 

  • van der Horst HC, Timmer JMK, Robbertsen T, Leenders J (1995) Use of nanofiltration for concentration and demineralization in the dairy industry: model for mass transport. J Membr Sci 104:205–218

    Article  Google Scholar 

  • van Reis R, Brake JM, Charkoudian J, Burns DB, Zydney AL (1999) High-performance tangential flow filtration using charged membranes. J Membr Sci 159:133–142

    Article  Google Scholar 

  • van Reis R, Gadam S, Frautschy LN, Orlando S, Goodrich EM, Saksena S, Kuriyel R, Simpson CM, Pearl S, Zydney AL (1997) High performance tangential flow filtration. Biotechnol Bioeng 56:71–82

    Article  Google Scholar 

  • van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12:208–211

    Article  Google Scholar 

  • Vandegraaf EA, Out TA, Kobesen A, Jansen HM (1991) Lactoferrin and secretory IgA in the bronchoalveolar lavage fluid from patients with a stable asthma. Lung 169:275–283

    Article  CAS  Google Scholar 

  • Vijayalakshmi MA, Lemieux L, Amiot J (1986) High performance size exclusion liquid chromatography of small molecular weight peptides from protein hydrolysates using methanol as a mobile phase additive. J Liq Chromatogr 9:3559–3576

    Article  CAS  Google Scholar 

  • Vogel HJ (2012) Lactoferrin, a bird’s eye view. Biochem Cell Biol 90:233–244

    Article  CAS  Google Scholar 

  • Vorland LH (1999) Lactoferrin: a multifunctional glycoprotein. APMIS 107:971–981

    Article  CAS  Google Scholar 

  • Walkenström P, Windhab E, Hermansson AM (1998) Shear-induced structuring of particulate whey protein gels. Food Hydrocoll 12:459–468

    Article  Google Scholar 

  • Wang M, Lee C-G, Ryu C-K (2008) CO2 sorption and desorption efficiency of Ca2SiO4. Int J Hydrog Energy 33:6368–6372

    Article  CAS  Google Scholar 

  • Weinbreck F, Minor M, De Kruif CG (2004) Microencapsulation of oils using whey protein/gum arabic coacervates. J Microencapsul 21:667–679

    Article  CAS  Google Scholar 

  • Xu D, Wang X, Jiang J, Yuan F, Decker EA, Gao Y (2013) Influence of pH, EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT - Food Sci Technol 54:236–241

    Article  CAS  Google Scholar 

  • Xu YY (2013) Understanding the mechanism and factors affecting the surface composition of powder particles containing proteins during spray drying. Ph.D. thesis, The University of Queensland, Brisbane

    Google Scholar 

  • Ye X, Yoshida S, Ng TB (2000) Isolation of lactoperoxidase, lactoferrin, α-lactalbumin, β-lactoglobulin B and β-lactoglobulin A from bovine rennet whey using ion exchange chromatography. Int J Biochem Cell Biol 32:1143–1150

    Article  CAS  Google Scholar 

  • Yoo YC, Watanabe S, Watanabe R, Hata K, Shimazaki KI, Azuma I (1997) Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Cancer Sci 88:184–190

    CAS  Google Scholar 

  • Yoshida S, Ye X (1991) Isolation of lactoperoxidase and lactoferrins from bovine milk acid whey by carboxymethyl cation exchange chromatography. J Dairy Sci 74:1439–1444

    Article  CAS  Google Scholar 

  • Young SL, Sarda X, Rosenberg M (1993a) Microencapsulating properties of whey proteins. 1. Microencapsulation of anhydrous milk fat. J Dairy Sci 76:2868–2877

    Article  CAS  Google Scholar 

  • Young SL, Sarda X, Rosenberg M (1993b) Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates. J Dairy Sci 76:2878–2885

    Article  CAS  Google Scholar 

  • Yver AL, Bonnaillie LM, Yee W, McAloon A, Tomasula PM (2011) Fractionation of whey protein isolate with supercritical carbon dioxide—process modeling and cost estimation. Int J Mol Sci 13:240–259

    Article  CAS  Google Scholar 

  • Zweiman B, Kucich U, Shalit M, Vonallmen C, Moskovitz A, Weinbaum G, Atkins PC (1990) Release of lactoferrin and elastase in human allergic skin reactions. J Immunol 144:3953–3960

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bansal, N., Bhandari, B. (2016). Functional Milk Proteins: Production and Utilization—Whey-Based Ingredients. In: McSweeney, P., O'Mahony, J. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2800-2_3

Download citation

Publish with us

Policies and ethics