Skip to main content

A Stochastic Model of the Melanopsin Phototransduction Cascade

  • Conference paper
Applications of Dynamical Systems in Biology and Medicine

Abstract

Melanopsin is an unusual vertebrate photopigment that, in mammals, is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose signaling has been implicated in non-image forming vision, regulating such functions as circadian rhythms, pupillary light reflex, and sleep. The biochemical cascade underlying the light response in ipRGCs has not yet been fully elucidated. We developed a stochastic model of the hypothesized melanopsin phototransduction cascade and illustrated that the stochastic model can qualitatively reproduce experimental results under several different conditions. The model allows us to probe various mechanisms in the phototransduction cascade in a way that is not currently experimentally feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berson, D.M., Castrucci, A.M., Provencio, I.: Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. Journal of Comparative Neurology 518(13), 2405–2422 (2010)

    Google Scholar 

  2. Blasic Jr., J.R., Matos-Cruz, V., Ujla, D., Cameron, E.G., Hattar, S., Halpern, M.E., Robinson, P.R.: Identification of critical phosphorylation sites on the carboxy tail of melanopsin. Biochemistry 53(16), 2644–2649 (2014)

    Article  Google Scholar 

  3. Cameron, E.G., Robinson, P.R.: β-arrestin-dependent deactivation of mouse melanopsin. PloS one 9(11) (2014). e113138

    Google Scholar 

  4. Caruso, G., Bisegna, P., Andreucci, D., Lenoci, L., Gurevich, V.V., Hamm, H.E., DiBenedetto, E.: Identification of key factors that reduce the variability of the single photon response. Proceedings of the National Academy of Sciences 108(19), 7804–7807 (2011)

    Article  Google Scholar 

  5. Do, M.T.H., Yau, K.W.: Intrinsically photosensitive retinal ganglion cells. Physiological Reviews 90(4), 1547–1581 (2010)

    Article  Google Scholar 

  6. Do, M.T.H., Yau, K.W.: Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proceedings of the National Academy of Sciences 110(18), 7470–7475 (2013)

    Article  Google Scholar 

  7. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  9. Gooley, J.J., Lu, J., Fischer, D., Saper, C.B.: A broad role for melanopsin in nonvisual photoreception. Journal of Neuroscience 23(18), 7093–7106 (2003)

    Google Scholar 

  10. Graham, D.M., Wong, K.Y., Shapiro, P., Frederick, C., Pattabiraman, K., Berson, D.M.: Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. Journal of Neurophysiology 99(5), 2522–2532 (2008)

    Article  Google Scholar 

  11. Hamer, R.D., Nicholas, S.C., Tranchina, D., Lamb, T.D., Jarvinen, J.L.P.: Toward a unified model of vertebrate rod phototransduction. Visual Neuroscience 22(04), 417–436 (2005)

    Article  Google Scholar 

  12. Hamer, R.D., Nicholas, S.C., Tranchina, D., Liebman, P.A., Lamb, T.D.: Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses. Journal of General Physiology 122(4), 419–444 (2003)

    Article  Google Scholar 

  13. Hardie, R.C.: TRP channels and lipids: from Drosophila to mammalian physiology. Journal of Physiology 578(1), 9–24 (2007)

    Article  Google Scholar 

  14. Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K.W., Berson, D.M.: Central projections of melanopsin-expressing retinal ganglion cells in the mouse. Journal of Comparative Neurology 497(3), 326–349 (2006)

    Article  Google Scholar 

  15. Hofmann, T., Obukhov, A.G., Schaefer, M., Harteneck, C., Gudermann, T., Schultz, G.: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716), 259–263 (1999)

    Article  Google Scholar 

  16. Hu, C., Hill, D.J.D., Wong, K.Y.: Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors. Journal of Neurophysiology 109(7), 1876–1889 (2013)

    Article  Google Scholar 

  17. Hughes, S., Jagannath, A.,, Hickey, D., Gatti, S., Wood, M., Peirson, S.N., Foster, R.G., Hankins, M.W.: Using siRNA to define functional interactions between melanopsin and multiple G protein partners. Cellular and Molecular Life Sciences (2014). DOI 10.1007/s00018-014-1664-6

    Google Scholar 

  18. Hurley, J.B., Spencer, M., Niemi, G.A.: Rhodopsin phosphorylation and its role in photoreceptor function. Vision Research 38(10), 1341–1352 (1998)

    Article  Google Scholar 

  19. Invergo, B.M., Montanucci, L., Koch, K.W., Bertranpetit, J., Dell’Orco, D.: Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Cell Communication and Signaling 11(1), 36 (2013)

    Article  Google Scholar 

  20. Kennedy, M.J., Dunn, F.A., Hurley, J.B.: Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones. Neuron 41(6), 915–928 (2004)

    Article  Google Scholar 

  21. Korenbrot, J.I.: Speed, adaptation, and stability of the response to light in cone photoreceptors: The functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. Journal of General Physiology 139(1), 31–56 (2012)

    Article  Google Scholar 

  22. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. Journal of Chemical Physics 57(7), 2976–2978 (1972)

    Article  Google Scholar 

  23. Lamb, T.D., Pugh Jr., E.N.: A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. Journal of Physiology 449(1), 719–758 (1992)

    Article  Google Scholar 

  24. Liu, W., Wen, W., Wei, Z., Yu, J., Ye, F., Liu, C.H., Hardie, R.C., Zhang, M.: The INAD scaffold is a dynamic, redox-regulated modulator of signaling in the Drosophila eye. Cell 145(7), 1088–1101 (2011)

    Article  Google Scholar 

  25. Lucas, R.J.: Mammalian inner retinal photoreception. Current Biology 23(3) (2013). R125-133

    Article  Google Scholar 

  26. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology 254(1), 178–196 (2008)

    Article  MathSciNet  Google Scholar 

  27. Mendez, A., Burns, M.E., Roca, A., Lem, J., Wu, L.W., Simon, M.I., Baylor, D.A., Chen, J.: Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28(1), 153–164 (2000)

    Article  Google Scholar 

  28. Palczewski, K.: Chemistry and biology of vision. Journal of Biological Chemistry 287(3), 1612–1619 (2012)

    Article  Google Scholar 

  29. Porter, M.L., Blasic, J.R., Bok, M.J., Cameron, E.G., Pringle, T., Cronin, T.W., Robinson, P.R.: Shedding new light on opsin evolution. Proceedings of the Royal Society B: Biological Sciences (2011). Rspb.2011.1819

    Google Scholar 

  30. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. Journal of Chemical Physics 118(11), 4999–5010 (2003)

    Article  Google Scholar 

  31. Reingruber, J., Pahlberg, J., Woodruff, M.L., Sampath, A.P., Fain, G.L., Holcman, D.: Detection of single photons by toad and mouse rods. Proceedings of the National Academy of Sciences 110(48), 19,378–19,383 (2013)

    Google Scholar 

  32. Schmidt, T.M., Do, M.T.H., Dacey, D., Lucas, R., Hattar, S., Matynia, A.: Melanopsin-positive intrinsically photosensitive retinal ganglion cells: From form to function. Journal of Neuroscience 31(45), 16,094–16,101 (2011)

    Article  Google Scholar 

  33. Shen, L., Caruso, G., Bisegna, P., Andreucci, D., Gurevich, V.V., Hamm, H.E., DiBenedetto, E.: Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters. IET Systems Biology 4(1), 12–32 (2010)

    Article  Google Scholar 

  34. Shieh, B.H., Zhu, M.Y.: Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16(5), 991–998 (1996)

    Article  Google Scholar 

  35. Vishnivetskiy, S.A., Raman, D., Wei, J., Kennedy, M.J., Hurley, J.B., Gurevich, V.V.: Regulation of arrestin binding by rhodopsin phosphorylation level. Journal of Biological Chemistry 282(44), 32,075–32,083 (2007)

    Article  Google Scholar 

  36. Warren, E.J., Allen, C.N., Brown, R.L., Robinson, D.W.: Intrinsic light responses of retinal ganglion cells projecting to the circadian system. European Journal of Neuroscience 17(9), 1727–1735 (2003)

    Article  Google Scholar 

  37. Wong, K.Y., Dunn, F.A., Berson, D.M.: Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48(6), 1001–1010 (2005)

    Article  Google Scholar 

  38. Xue, T., Do, M.T.H., Riccio, A., Jiang, Z., Hsieh, J., Wang, H.C., Merbs, S.L., Welsbie, D.S., Yoshioka, T., Weissgerber, P., Stolz, S., Flockerzi, V., Freichel, M., Simon, M.I., Clapham, D.E., Yau, K.W.: Melanopsin signalling in mammalian iris and retina. Nature 479(7371), 67–73 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Institute for Mathematics and its Applications (IMA), where this work was initiated. This research has been supported in part by the National Institutes of Health under grant R01EY019053 (P.R.R.) and MH67094 (R.L.B.). E.G.C. was supported by National Institutes of Health under training grant NIH/NIGMS T32GM066706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen A. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this paper

Cite this paper

Brown, R.L. et al. (2015). A Stochastic Model of the Melanopsin Phototransduction Cascade. In: Jackson, T., Radunskaya, A. (eds) Applications of Dynamical Systems in Biology and Medicine. The IMA Volumes in Mathematics and its Applications, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2782-1_8

Download citation

Publish with us

Policies and ethics