Skip to main content

Strategies for Engineering Protein N-Glycosylation Pathways in Mammalian Cells

  • Protocol
Glyco-Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

Complexity and heterogeneity of oligosaccharides present a considerable challenge to the biopharmaceutical industry to manufacture biotherapeutics with reproducible and consistent glycoform profiles. Mammalian cells, especially Chinese hamster ovary cells, are the most widely used platform for the production of biotherapeutics. The glycans produced are predominantly of the complex type, with some differences between human and nonhuman mammalian glycosylation existing. This review briefly summarizes metabolic glyco-engineering strategies used in mammalian cells in order to alter the glycosylation patterns attached to proteins applied for diverse biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold JN, Wormald MR, Sim RB et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  CAS  PubMed  Google Scholar 

  2. Li H, d’Anjou M (2009) Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 20:678–684

    Article  CAS  PubMed  Google Scholar 

  3. Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15:456–462

    Article  CAS  PubMed  Google Scholar 

  4. Walsh G (2010) Biopharmaceutical benchmarks. Nat Biotechnol 28:917–924

    Article  CAS  PubMed  Google Scholar 

  5. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  PubMed  Google Scholar 

  6. Betenbaugh MJ, Tomiya N, Narang S et al (2004) Biosynthesis of human-type N-glycans in heterologous systems. Curr Opin Struct Biol 14:601–606

    Article  CAS  PubMed  Google Scholar 

  7. Jayapal KR, Wlaschin KF, Hu WS et al (2007) Recombinant protein therapeutics from CHO cells—20 years and counting. Chem Eng Prog 103:40–47

    CAS  Google Scholar 

  8. Butler M (2005) Animal cell cultures, recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  CAS  PubMed  Google Scholar 

  9. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  CAS  PubMed  Google Scholar 

  10. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949

    Article  CAS  PubMed  Google Scholar 

  11. Stacey G, Davis J (2007) In: Stacey G, Davis J (Eds). Medicines from animal cell culture, vol. XVI. Wiley, Chichester. pp. 672

    Google Scholar 

  12. Jefferis R (2005) Glycosylation of natural and recombinant antibody molecules. Adv Exp Med Biol 564:143–148

    CAS  PubMed  Google Scholar 

  13. Jenkins N, Curling EMA (1994) Glycosylation of recombinant proteins—problems and prospects. Enzyme Microb Technol 16:354–364

    Article  CAS  PubMed  Google Scholar 

  14. Umana P, Jean-Mairet J, Moudry R et al (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  CAS  PubMed  Google Scholar 

  15. Varki A (2001) Loss of N-glycolylneuraminic acid in humans, mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol 33:54–69

    Article  PubMed  Google Scholar 

  16. Tangvoranuntakul P, Gagneux P, Diaz S et al (2003) Human uptake and incorporation of an immunogenic non-human dietary sialic acid. Proc Natl Acad Sci U S A 100:12045–12050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bardor M, Nguyen DH, Diaz S et al (2005) Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280:4228–4237

    Article  CAS  PubMed  Google Scholar 

  18. Padler-Karavani V, Hurtado-Ziola N, Pu MY et al (2011) Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res 71:3352–3363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Noguchi A, Mukuria CJ, Suzuki E et al (1995) Immunogenicity of N-glycolylneuraminic acid-containing carbohydrate chains of recombinant-human-erythropoietin expressed in Chinese-Hamster ovary cells. J Biochem Tokyo 117:59–62

    CAS  PubMed  Google Scholar 

  20. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    Article  CAS  PubMed  Google Scholar 

  21. Zhang M, Koskie K, Ross JS et al (2010) Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 105:1094–1105

    CAS  PubMed  Google Scholar 

  22. Chen PF, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8:123–132

    Article  CAS  PubMed  Google Scholar 

  23. Galili U, Rachmilewitz EA, Peleg A et al (1984) Unique natural human-Igg antibody with anti-alpha-galactosyl specificity. J Exp Med 160:1519–1531

    Article  CAS  PubMed  Google Scholar 

  24. Chung CH, Mirakhur B, Chan E et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Beck A, Wagner-Rousset E, Bussat MC et al (2008) Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr Pharma Biotechnol 9:482–501

    Article  CAS  Google Scholar 

  26. Padler-Karavani V, Yu H, Cao HZ et al (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: Potential implications for disease. Glycobiology 18:818–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sheeley DM, Reinhold VN (1997) The detailed structural characterization of N-linked oligosaccharides using a quadrupole ion trap mass spectrometer. Glycobiology 7:38

    Google Scholar 

  28. Dingermann T (2008) Recombinant therapeutic proteins: production platforms and challenges. Biotechnol J 3:90–97

    Article  CAS  PubMed  Google Scholar 

  29. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92:711–728

    Article  CAS  PubMed  Google Scholar 

  30. Wang LX, Lomino JV (2012) Emerging technologies for making glycan-defined glycoproteins. ACS Chem Biol 7:110–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem Rev 102:439–469

    Article  CAS  PubMed  Google Scholar 

  32. Ashwell G, Morell A (1974) The dual role of sialic acid in the hepatic recognition and catabolism of serum glycoproteins. Biochem Soc Symp 40:117–124

    CAS  PubMed  Google Scholar 

  33. Ngantung FA, Miller PG, Brushett FR et al (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol Bioeng 95:106–119

    Article  CAS  PubMed  Google Scholar 

  34. Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology 107:49–64

    Article  CAS  PubMed  Google Scholar 

  35. Bragonzi A, Distefano G, Buckberry LD et al (2000) A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim Biophys Acta 1474:273–282

    Article  CAS  PubMed  Google Scholar 

  36. Gu X, Wang DI (1998) Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58:642–648

    Article  CAS  PubMed  Google Scholar 

  37. Zhang P, Tan DL, Heng D et al (2010) A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metab Eng 12:526–536

    Article  CAS  PubMed  Google Scholar 

  38. Minch SL, Kallio PT, Bailey JE (1995) Tissue plasminogen activator coexpressed in Chinese hamster ovary cells with alpha(2,6)-sialyltransferase contains NeuAc alpha(2,6)Gal beta(1,4)Glc-N-AcR linkages. Biotechnol Prog 11:348–351

    Article  CAS  PubMed  Google Scholar 

  39. Fukuta K, Abe R, Yokomatsu T et al (2000) Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 10:421–430

    Article  CAS  PubMed  Google Scholar 

  40. Jassal R, Jenkins N, Charlwood J et al (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase. Biochem Biophys Res Commun 286:243–249

    Article  CAS  PubMed  Google Scholar 

  41. Weikert S, Papac D, Briggs J et al (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17:1116–1121

    Article  CAS  PubMed  Google Scholar 

  42. Jeong YT, Choi O, Lim HR et al (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18:1945–1952

    CAS  PubMed  Google Scholar 

  43. Munster-Kuhnel AK, Tiralongo J, Krapp S et al (2004) Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology 14:43R–51R

    Article  PubMed  Google Scholar 

  44. Hooker AD, Green NH, Baines AJ et al (1999) Constraints on the transport and glycosylation of recombinant IFN-gamma in Chinese hamster ovary and insect cells. Biotechnol Bioeng 63:559–572

    Article  CAS  PubMed  Google Scholar 

  45. Lawrence SM, Huddleston KA, Tomiya N et al (2001) Cloning and expression of human sialic acid pathway genes to generate CMP-sialic acids in insect cells. Glycoconj J 18:205–213

    Article  CAS  PubMed  Google Scholar 

  46. Wong NS, Yap MG, Wang DI (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 93:1005–1016

    Article  CAS  PubMed  Google Scholar 

  47. Jeong YT, Choi O, Son YD et al (2009) Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Biotechnol Appl Biochem 52:283–291

    Article  CAS  PubMed  Google Scholar 

  48. Son YD, Jeong YT, Park SY et al (2011) Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21:1019–1028

    Article  CAS  PubMed  Google Scholar 

  49. Monti E, Preti A, Venerando B et al (2002) Recent development in mammalian sialidase molecular biology. Neurochem Res 27:649–663

    Article  CAS  PubMed  Google Scholar 

  50. de Geest N, Bonten E, Mann L et al (2002) Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosis and galactosialidosis in mice. Human Mol Genet 11:1455–1464

    Article  Google Scholar 

  51. Hinek A, Pshezhetsky AV, von Itzstein M et al (2006) Lysosomal sialidase (neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly. J Biol Chem 281:3698–3710

    Article  CAS  PubMed  Google Scholar 

  52. Kakugawa Y, Wada T, Yamaguchi K et al (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci U S A 99:10718–10723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Seyrantepe V, Landry K, Trudel S et al (2004) Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. J Biol Chem 279:37021–37029

    Article  CAS  PubMed  Google Scholar 

  54. Tringali C, Papini N, Fusi P et al (2004) Properties of recombinant human cytosolic sialidase HsNEU2. The enzyme hydrolyzes monomerically dispersed GM1 ganglioside molecules. J Biol Chem 279:3169–3179

    Article  CAS  PubMed  Google Scholar 

  55. Ferrari J, Gunson J, Lofgren J et al (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60:589–595

    Article  CAS  PubMed  Google Scholar 

  56. Clynes RA, Towers TL, Presta LG et al (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446

    Article  CAS  PubMed  Google Scholar 

  57. Matsumiya S, Yamaguchi Y, Saito J et al (2007) Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368:767–779

    Article  CAS  PubMed  Google Scholar 

  58. Kanda Y, Yamada T, Mori K et al (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fe oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17:104–118

    Article  CAS  PubMed  Google Scholar 

  59. Iida S, Misaka H, Inoue M et al (2006) Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin g on antibody-dependent cellular cytotoxicity through its high binding to Fc gamma RIIIa. Clin Cancer Res 12:2879–2887

    Article  CAS  PubMed  Google Scholar 

  60. Miyoshi E, Noda K, Yamaguchi Y et al (1999) The alpha 1-6-fucosyltransferase gene and its biological significance. Bba-Gen Subjects 1473:9–20

    Article  CAS  Google Scholar 

  61. Mori K, Kuni-Karnochi R, Yarnane-Ohnuki N et al (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88:901–908

    Article  CAS  PubMed  Google Scholar 

  62. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622

    Article  CAS  PubMed  Google Scholar 

  63. Ma B, Simala-Grant JL, Taylor DE (2006) Fucosylation in prokaryotes and eukaryotes. Glycobiology 16:158R–184R

    Article  CAS  PubMed  Google Scholar 

  64. Mori K, Iida S, Yamane-Ohnuki N et al (2007) Non-fucosylated therapeutic antibodies, the next generation of therapeutic antibodies. Cytotechnology 55:109–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  66. Cristea S, Freyvert Y, Santiago Y et al (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng 110:871–880

    Article  CAS  PubMed  Google Scholar 

  67. Shinkawa T, Nakamura K, Yamane N et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  CAS  PubMed  Google Scholar 

  68. Pastuszak I, Ketchum C, Hermanson G et al (1998) GDP-L-fucose pyrophosphorylase. Purification, cDNA cloning, and properties of the enzyme. J Biol Chem 273:30165–30174

    Article  CAS  PubMed  Google Scholar 

  69. Kanda Y, Imai-Nishiya H, Kuni-Kamochi R et al (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130:300–310

    Article  CAS  PubMed  Google Scholar 

  70. Omasa T, Tanaka R, Doi T et al (2008) Decrease in antithrombin III fucosylation by expressing GDP-fucose transporter siRNA in Chinese hamster ovary cells. J Biosci Bioeng 106:168–173

    Article  CAS  PubMed  Google Scholar 

  71. Imai-Nishiya H, Mori K, Inoue M et al (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Ripka J, Adamany A, Stanley P (1986) Two Chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose. Arch Biochem Biophys 249:533–545

    Article  CAS  PubMed  Google Scholar 

  73. Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fc gamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  PubMed  Google Scholar 

  74. Yamane-Ohnuki N, Satoh M (2009) Production of therapeutic antibodies with controlled fucosylation. mAbs 1:230–236

    Article  PubMed Central  PubMed  Google Scholar 

  75. Schuster M, Umana P, Ferrara C et al (2005) Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res 65:7934–7941

    CAS  PubMed  Google Scholar 

  76. Davies J, Jiang L, Pan LZ et al (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74:288–294

    Article  CAS  PubMed  Google Scholar 

  77. Ferrara C, Brunker P, Suter T et al (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93:851–861

    Article  CAS  PubMed  Google Scholar 

  78. Ferrara C, Stuart F, Sondermann P et al (2006) The carbohydrate at Fc gamma RIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281:5032–5036

    Article  CAS  PubMed  Google Scholar 

  79. Castilho A, Gattinger P, Grass J et al (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhao Y, Sato Y, Isaji T et al (2008) Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J 275:1939–1948

    Article  CAS  PubMed  Google Scholar 

  81. Demetriou M, Granovsky M, Quaggin S et al (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–739

    Article  CAS  PubMed  Google Scholar 

  82. Lau KS, Dennis JW (2008) N-Glycans in cancer progression. Glycobiology 18:750–760

    Article  CAS  PubMed  Google Scholar 

  83. Fukuta K, Yokomatsu T, Abe R et al (2000) Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj J 17:895–904

    Article  CAS  PubMed  Google Scholar 

  84. Elliott S, Lorenzini T, Asher S et al (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21:414–421

    Article  CAS  PubMed  Google Scholar 

  85. Egrie JC, Dwyer E, Browne JK et al (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31:290–299

    Article  CAS  PubMed  Google Scholar 

  86. Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant 16:3–13

    Article  PubMed  Google Scholar 

  87. Macdougall IC (1999) The role of ACE inhibitors and angiotensin II receptor blockers in the response to epoetin. Nephrol Dial Transplant 14:1836–1841

    Article  CAS  PubMed  Google Scholar 

  88. Perlman S, van den Hazel B, Christiansen J et al (2003) Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J Clin Endocrinol Metabol 88:3227–3235

    Article  CAS  Google Scholar 

  89. Stork R, Zettlitz KA, Muller D et al (2008) N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 283:7804–7812

    Article  CAS  PubMed  Google Scholar 

  90. Kronman C, Velan B, Marcus D et al (1995) Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem J 311:959–967

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Chitlaru T, Kronman C, Velan B et al (2002) Overloading and removal of N-glycosylation targets on human acetylcholinesterase: effects on glycan composition and circulatory residence time. Biochem J 363:619–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Kronman C, Chitlaru T, Elhanany E et al (2000) Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem 275:29488–29502

    Article  CAS  PubMed  Google Scholar 

  93. Chitlaru T, Kronman C, Velan B et al (2001) Effect of human acetylcholinesterase subunit assembly on its circulatory residence. Biochem J 354:613–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Gawlitzek M, Valley U, Nimtz M et al (1995) Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J Biotechnol 42:117–131

    Article  CAS  PubMed  Google Scholar 

  95. Patel TP, Parekh RB, Moellering BJ et al (1992) Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem J 285:839–845

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog 18:129–138

    Article  CAS  PubMed  Google Scholar 

  97. Zhao FQ, Keating AF (2007) Functional properties and genomics of glucose transporters. Curr Genomics 8:113–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Wong DCF, Wong KTK, Goh LT et al (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Article  CAS  Google Scholar 

  99. Nyberg GB, Balcarcel RR, Follstad BD et al (1999) Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62:336–347

    Article  CAS  PubMed  Google Scholar 

  100. Costa AR, Rodrigues ME, Henriques M et al (2014) Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol 34:281–299

    Article  CAS  PubMed  Google Scholar 

  101. Bulter T, Lee SG, Wong WW et al (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc Natl Acad Sci U S A 101:2299–2304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Kimura R, Miller WM (1999) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol Prog 13:311–317

    Article  Google Scholar 

  103. Zanghi JA, Fussenegger M, Bailey JE (1999) Serum protects protein-free competent Chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch culture. Biotechnol Bioeng 64:108–119

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, Q., Stuczynski, M., Gao, Y., Betenbaugh, M.J. (2015). Strategies for Engineering Protein N-Glycosylation Pathways in Mammalian Cells. In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics