Skip to main content

Protocol for Methylated DNA Immunoprecipitation (MeDIP) Analysis

  • Protocol
Epigenetic Methods in Neuroscience Research

Part of the book series: Neuromethods ((NM,volume 105))

Abstract

DNA methylation is a fundamental epigenetic mechanism for silencing gene expression by either modifying chromatin structure to a repressive state or interfering with the transcription factors’ binding. DNA methylation primarily occurs at the position C5 of a cytosine ring mainly in the context of CpG dinucleotides. The modification can be recognized both in vivo and in vitro by the methyl-CpG binding proteins (MBPs) as well as in vitro by an antibody raised against 5-methylcytosine (5mC). This chapter describes different MBPs and introduces a standard methylated DNA immunoprecipitation (MeDIP) method, which is based on using the anti-5mC antibody to isolate methylated DNA fragments for subsequent locus-specific DNA methylation analysis. The MeDIP-generated DNA can be used as well for methylation profiling on a genome scale using array-based (MeDIP-chip) and high-throughput (MeDIP-seq) technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  2. Reamon-Buettner SM, Borlak J (2007) A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reprod Toxicol 24:20–30

    Article  CAS  PubMed  Google Scholar 

  3. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  PubMed  Google Scholar 

  4. Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19:959–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Haines TR, Rodenhiser DI, Ainsworth PJ (2001) Allele-specific non-CpG methylation of the Nf1 gene during early mouse development. Dev Biol 240:585–598

    Article  CAS  PubMed  Google Scholar 

  6. Lomvardas S, Barnea G, Pisapia DJ et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126:403–413

    Article  CAS  PubMed  Google Scholar 

  7. Bird A, Taggart M, Frommer M et al (1985) A fraction of the mouse genome that is derived from islands of nonmethylated. CpG-rich DNA. Cell 40:91–99

    Article  CAS  PubMed  Google Scholar 

  8. Weber M, Hellmann I, Stadler MB et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  CAS  PubMed  Google Scholar 

  9. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Santoro R, Grummt I (2005) Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 25:2539–2546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yoon HG, Chan DW, Reynolds AB et al (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12:723–734

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Ng HH, Erdjument-Bromage H et al (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481

    Article  CAS  PubMed  Google Scholar 

  15. Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  16. Buck-Koehntop BA, Defossez PA (2013) On how mammalian transcription factors recognize methylated DNA. Epigenetics 8:131–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Klose RJ, Sarraf SA, Schmiedeberg L et al (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19:667–678

    Article  CAS  PubMed  Google Scholar 

  18. Clouaire T, de Las Heras JI, Merusi C, Stancheva I (2010) Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res 38:4620–4634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Scarsdale JN, Webb HD, Ginder GD, Williams DC Jr (2011) Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence. Nucleic Acids Res 39:6741–6752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Baubec T, Ivánek R, Lienert F, Schübeler D (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153:480–492

    Article  CAS  PubMed  Google Scholar 

  21. Günther K, Rust M, Leers J et al (2013) Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences. Nucleic Acids Res 41:3010–3021

    Article  PubMed Central  PubMed  Google Scholar 

  22. Cramer JM, Scarsdale JN, Walavalkar NM et al (2014) Probing the dynamic distribution of bound states for methylcytosine-binding domains on DNA. J Biol Chem 289:1294–1302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Quenneville S, Verde G, Corsinotti A et al (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  25. Arita K, Ariyoshi M, Tochio H et al (2008) Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455:818–821

    Article  CAS  PubMed  Google Scholar 

  26. Avvakumov GV, Walker JR, Xue S et al (2008) Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455:822–825

    Article  CAS  PubMed  Google Scholar 

  27. Prokhortchouk A, Hendrich B, Jorgensen H et al (2001) The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 15:1613–1618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Frauer C, Hoffmann T, Bultmann S et al (2011) Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS One 6:e21306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  30. Thu KL, Pikor LA, Kennett JY et al (2010) Methylation analysis by DNA immunoprecipitation. J Cell Physiol 222:522–531

    CAS  PubMed  Google Scholar 

  31. Ventskovska O, Porkka-Heiskanen T, Karpova NN (2015) Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats. J Sleep Res 24(2):124–130. doi:10.1111/jsr.12242

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina N. Karpova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karpova, N.N., Umemori, J. (2016). Protocol for Methylated DNA Immunoprecipitation (MeDIP) Analysis. In: Karpova, N. (eds) Epigenetic Methods in Neuroscience Research. Neuromethods, vol 105. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2754-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2754-8_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2753-1

  • Online ISBN: 978-1-4939-2754-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics