Skip to main content

Localizing Proteins by Tissue Printing

  • Protocol
Western Blotting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1312))

Abstract

The simple technique of making tissue prints on appropriate substrate material has made possible the easy localization of proteins, nucleic acids, carbohydrates, and small molecules in a tissue-specific mode. Plant tissues can be used to produce prints revealing a remarkable amount of anatomical detail, even without staining, which might be used to record developmental changes over time. In this chapter we will focus on the protocols for the localization of proteins and glycans using antibodies or lectins, probably the most frequently used application, but the localization of other molecules is reported and the sources indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daoust R (1957) Localization of deoxyribonuclease in tissue sections. A new approach to the histochemistry of enzymes. Exp Cell Res 12:203–211

    Article  CAS  PubMed  Google Scholar 

  2. Reid PD, Pont-Lezica RF, del Campillo E, Taylor R (eds) (1992) Tissue printing. Academic, San Diego, CA

    Google Scholar 

  3. Varner J, Ye Z (1994) Tissue printing. FASEB J 8:378–384

    CAS  PubMed  Google Scholar 

  4. Tieman DM, Handa A (1989) Immunocytolocalization of polygalacturonase in ripening tomato fruit. Plant Physiol 90:17–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Pont-Lezica RF, Taylor R, Varner J (1991) Solanum tuberosum agglutinin accumulation during tuber development. J Plant Physiol 137:453–458

    Article  CAS  Google Scholar 

  6. Cassab GI, Varner JE (1987) Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper. J Cell Biol 105:2581–2588

    Article  CAS  PubMed  Google Scholar 

  7. Hancock K, Tsang VCW (1983) India ink staining for protein on nitrocellulose paper. Anal Biochem 133:157–162

    Article  CAS  PubMed  Google Scholar 

  8. Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  CAS  PubMed  Google Scholar 

  9. Cassab GI, Lin JJ, Lin LS, Varner JE (1988) Ethylene effect on extensin and peroxidase distribution in the subapical region of pea epicotyls. Plant Physiol 88:522–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jacobsen J, Knox R (1973) Cytochemical localization and antigenicity of α-amylase in barley aleurone tissue. Planta 112:213–224

    Article  CAS  PubMed  Google Scholar 

  11. Nolan M, David B (1984) A starch-agar gel method for the localization of starch hydrolyzing enzymes in the cotyledons and hypocotyls of beans. Am J Bot 71:137–141

    Article  CAS  Google Scholar 

  12. Spruce J, Mayer AM, Osborne DJ (1987) A simple histochemical method for locating enzymes in plant tissue using nitrocellulose blotting. Phytochemistry 26:2901–2903

    Article  CAS  Google Scholar 

  13. Pearse AGE (1980) Substrate film techniques. In: Pearse AGE (ed) Histochemistry, theoretical and applied. Churchill Livingstone, Edinburgh, pp 253–269

    Google Scholar 

  14. Roth R, Boudet A, Pont-Lezica RF (1997) Lignification and cinnamyl alcohol dehydrogenase activity in developing stems of tomato and polar: a spatial and kinetic study through tissue printing. J Exp Bot 48:247–254

    Article  CAS  Google Scholar 

  15. da Silva E, Toorop P, van Aelst A, Hilhorst H (2004) Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta 220:251–261

    Article  PubMed  Google Scholar 

  16. Driouich A, Lainé A, Vian B, Faye L (1992) Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J 2:13–24

    Article  CAS  Google Scholar 

  17. Hara M, Eto H, Kuboi T (2001) Tissue printing for myrosinase activity in roots of turnip and Japanese radish and horseradish: a technique for localizing myrosinases. Plant Sci 160:425–431

    Article  CAS  PubMed  Google Scholar 

  18. Maki H, Morohashi Y (2006) Development of polyphenol oxidase activity in the micropylar endosperm of tomato seeds. J Plant Physiol 163:1–10

    Article  CAS  PubMed  Google Scholar 

  19. Yomo H, Taylor MP (1973) Histochemical studies on protease formation in the cotyledons of germinating bean seeds. Planta 112:35–43

    Article  CAS  PubMed  Google Scholar 

  20. Harris N, Chrispeels MJ (1975) Histochemical and biochemical observations on storage protein metabolism and protein body autolysis in cotyledons of germinating beans. Plant Physiol 56:292–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Moore B, Kang B, Flurkey W (1989) Histochemical localization of mushroom tyrosinase in whole sections on nitrocellulose. Histochemistry 90:379–381

    Article  CAS  PubMed  Google Scholar 

  22. Singh MB, Knox R (1985) Grass pollen allergens: antigenic relationships detected using monoclonal antibodies and dot immunobinding assay. Int Arch Allergy Appl Immun 78:300–304

    Article  CAS  Google Scholar 

  23. Antikainen M, Griffith M, Zhang J, Hon W, Yang D, Pihakaski-Maunsbach K (1996) Immunolocalization of antifreeze proteins in winter rye leaves, crowns, and roots by tissue printing. Plant Physiol 110:845–857

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ramalho-Santos M, Pissarra J, Verissimo P, Pereira S, Salema R, Pires E et al (1997) Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203(2):204–212

    Article  CAS  PubMed  Google Scholar 

  25. del Campillo E, Reid P, Sexton R, Lewis L (1990) Occurrence and localization of 9.5 cellulase in abscising and nonabscising tissues. Plant Cell 2:245–254

    Article  PubMed Central  PubMed  Google Scholar 

  26. Reid PD, del Campillo E, Lewis LN (1990) Anatomical changes and immunolocalization of cellulase during abscission as observed on nitrocellulose tissue prints. Plant Physiol 93:160–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pont-Lezica RF, Varner JE (1989) Histochemical localization of cysteine-rich proteins by tissue printing on nitrocellulose. Anal Biochem 182:334–337

    Article  CAS  PubMed  Google Scholar 

  28. Bailey BA, Taylor R, Dean JF, Anderson JD (1991) Ethylene biosynthesis-inducing endoxylanase is translocated through the xylem of Nicotiana tabacum cv xanthi plants. Plant Physiol 97:1181–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Cho H, Kende H (1997) Expansins and internodal growth of deepwater rice. Plant Physiol 113:1145–1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hood K, Baasiri R, Fritz S, Hood E (1991) Biochemical and tissue print analyses of hydroxyproline-rich glycoproteins in cell walls of sporophytic maize tissues. Plant Physiol 96:1214–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ye ZH, Song YR, Marcus A, Varner JE (1991) Comparative localization of three classes of cell wall proteins. Plant J 1:175–183

    Article  CAS  PubMed  Google Scholar 

  32. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  33. Pereira S, Carvalho H, Sunkel C, Salema R (1992) Immunocytolocalization of glutamine synthase in mesophyll and phloem of leaves of Solanum tuberosum L. Protoplasma 167:66–73

    Article  CAS  Google Scholar 

  34. Keller B, Sauer N, Lamb CJ (1988) Glycine-rich cell wall proteins in bean: gene structure and association of the proteins with the vascular system. EMBO J 7:3625–3633

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ye ZH, Varner J (1991) Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ryser U, Keller B (1992) Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxylem cells. Plant Cell 4:773–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gabius S, Hellmann KP, Hellmann T, Brinck U, Gabius HJ (1989) Neoglycoenzymes: a versatile tool for lectin detection in solid phase assays and glycohistochemistry. Anal Biochem 182:447–451

    Article  CAS  PubMed  Google Scholar 

  38. Gonorazky A, Regente M, de la Canal L (2005) Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds. J Plant Physiol 162:618–624

    Article  CAS  PubMed  Google Scholar 

  39. Kausch K, Handa A (1997) Molecular cloning of a ripening-specific lipoxygenase and its expression during wild-type and mutant tomato fruit development. Plant Physiol 113:1041–1050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Maryani M, Morse M, Bradley G, Irving H, Cahill D, Gehring C (2003) In situ localization associates biologically active plant natriuretic peptide immuno-analogues with conductive tissue and stomata. J Exp Bot 54:1553–1564

    Article  CAS  PubMed  Google Scholar 

  41. Fujita Y, Fujita M, Mise K, Kobori T, Osaki T, Furusawa I (2000) Bromovirus movement protein conditions for the host specificity of virus movement through the vascular system and affects pathogenicity in cowpea. Mol Plant Microbe Interact 13:1195–1203

    Article  CAS  PubMed  Google Scholar 

  42. Dicenta F, Martinez-Gomez P, Bellanger I, Audergon J (2000) Localization of plum pox virus in stem and petiole tissues of apricot cultivars by immuno-tissue printing. Acta Virol 44:323–328

    CAS  PubMed  Google Scholar 

  43. Knapp E, da Camara Machado A, Puhringer H, Wang Q, Hanzer V, Weiss H et al (1995) Localization of fruit tree viruses by immuno-tissue printing in infected shoots of Malus sp. and Prunus sp. J Virol Methods 55:157–173

    Article  CAS  PubMed  Google Scholar 

  44. Mansky LM, Andrews RE, Durand DP, Hill JH (1990) Plant virus localization in leaf tissue by press blotting. Plant Mol Biol Rep 8:13–17

    Article  Google Scholar 

  45. Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117

    Article  CAS  PubMed  Google Scholar 

  46. Jung GL, Hahne G (1992) A simple method to increase resolution in whole leaf blotting. Plant Sci 82:125–132

    Article  Google Scholar 

  47. Lin NS, Hsu YH, Hsu HT (1990) Immunological detection of plant viruses and mycoplasma-like organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 80:824–828

    Article  CAS  Google Scholar 

  48. Polston JE, Bubrick P, Perring TM (1991) Detection of plant virus coat proteins on whole leaf blots. Anal Biochem 196:267–270

    Article  CAS  PubMed  Google Scholar 

  49. Burlat V, Kwon M, Davin L, Lewis N (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897

    Article  CAS  PubMed  Google Scholar 

  50. Willats W, Marcus S, Knox J (1998) Generation of monoclonal antibody specific to (1-5)-α-L-arabinan. Carbohydr Res 308:149–152

    Article  CAS  PubMed  Google Scholar 

  51. Varner JE, Song YR, Lin LS, Yuen H (1989) The role of cell wall proteins in the structure and function of cell walls. In: Goldberg R (ed) The molecular basis of plant development. Alan R Lis, New York, pp 161–168

    Google Scholar 

  52. Harriman RWF, Tieman DM, Handa AK (1992) Localization of pectin methylesterase mRNA in tomato fruit. In: Reid PD et al (eds) Tissue printing. Academic, San Diego, CA, pp 121–123

    Google Scholar 

  53. McClure B, Guilfoyle T (1989) Tissue print hybridization. A simple technique for detecting organ- and tissue-specific gene expression. Plant Mol Biol 12:517–524

    Article  CAS  PubMed  Google Scholar 

  54. Pont-Lezica RF (1992) Lectin and glycan recognition. In: Reid PD et al (eds) Tissue printing. Academic, San Diego, CA, pp 71–79

    Chapter  Google Scholar 

  55. Jones L, Seymour G, Knox J (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1,4)-α-D-galactan. Plant Physiol 113:1405–1412

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The author is grateful to the Université Paul Sabatier (Toulouse III, France) and the CNRS for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael F. Pont-Lezica Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pont-Lezica, R.F. (2015). Localizing Proteins by Tissue Printing. In: Kurien, B., Scofield, R. (eds) Western Blotting. Methods in Molecular Biology, vol 1312. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2694-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2694-7_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2693-0

  • Online ISBN: 978-1-4939-2694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics