Skip to main content

Islet Cell Transplantation: New Techniques for an Old Disease

  • Chapter
Technological Advances in Surgery, Trauma and Critical Care

Abstract

Islet cell transplantation is a promising treatment towards curing diabetes. Recently, the clinical outcomes have improved and this treatment has become a standard therapy for type 1 diabetic patients in several countries. Technical improvements of islet isolation include new pancreas preservation methods, new collagenase enzymes, and purification methods. In addition, immunosuppression protocols, especially T cell depletion induction and anti-inflammation strategies at the time of islet transplantation, have impact on the clinical outcomes. Several institutes have demonstrated that it is possible to achieve insulin independence after single-donor islet transplantation. This is a breakthrough since one of the major concerns of islet cell transplantation is inefficiency which exaggerates the donor shortage. Considering the huge numbers of diabetic patients, it is necessary to explore the cell source other than human donor pancreas. Islet transplantation using porcine islets is a promising treatment to overcome the donor shortage and in fact, clinical trials of neonatal porcine islet transplantations have been conducted. Stem-cell-derived insulin-producing cells have been created and the clinical trials of such cells might happen once current hurdles will be overcome. With advanced islet transplantation, it is desirable that diabetes would be converted from non-curable disease to curable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(suppl1):S62–9.

    Article  PubMed Central  Google Scholar 

  2. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:280–8.

    Article  Google Scholar 

  3. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54(7):2060–9.

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro AM, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355:1318–30.

    Article  CAS  PubMed  Google Scholar 

  5. Shapiro AMJ. Strategies towards single-donor islets of Langerhans transplantation. Curr Opin Organ Transplant. 2011;16:627–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care. 2012;35:1436–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wang Y, Danielson KK, Ropski A, et al. Systematic analysis of donor and isolation factor’s impact on human islet yield and size distribution. Cell Transplant. 2013;22:2323–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Matsumoto S, Okitsu T, Iwanaga Y, et al. Successful islet transplantation from non-heart-beating donor pancreata using modified Ricordi islet isolation method. Transplantation. 2006;82:460–5.

    Article  PubMed  Google Scholar 

  9. Matsumoto S, Okitsu T, Iwanaga Y, et al. Insulin independence after living donor distal pancreatectomy and islet allotransplantation. Lancet. 2005;365:1642–4.

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto S, Rigley TH, Qualley SA, et al. Efficacy of the oxygen-charged static two-layer method for short-term pancreas preservation and islet isolation from nonhuman primate and human pancreata. Cell Transplant. 2002;11:769–77.

    PubMed  Google Scholar 

  11. Matsumoto S, Takita M, Chaussabel D, et al. Improving efficacy of clinical islet transplantation with iodixanol based islet purification thymoglobulin induction and blockage of IL-1-beta and TNF alpha. Cell Transplant. 2011;20:1641–7.

    Article  PubMed  Google Scholar 

  12. Paushter DH, Qi M, Danielson KK, et al. Histidine-tryptophan-ketoglutarate and University of Wisconsin solution demonstrate equal effectiveness in the preservation of human pancreata intended for islet isolation: a large-scale, single-center experience. Cell Transplant. 2013;22:1113–21.

    Article  PubMed  Google Scholar 

  13. Matsumoto S, Noguchi H, Shimoda M, et al. Seven consecutive successful clinical islet isolations with pancreatic ductal injection. Cell Transplant. 2010;19:291–7.

    Article  PubMed  Google Scholar 

  14. Shimoda M, Itoh T, Sugimoto K, et al. Improvement of collagenase distribution with the ductal preservation for human islet isolation. Islets. 2012;4:130–7.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37:413–20.

    Article  CAS  PubMed  Google Scholar 

  16. Shimoda M, Itoh T, Iwahashi S, et al. An effective purification method using large bottles for human pancreatic isolation. Islets. 2012;4:380–404.

    Google Scholar 

  17. Hering BJ, Kandaswamy R, Ansite JD, et al. Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes. JAMA. 2005;293:830–5.

    Article  CAS  PubMed  Google Scholar 

  18. Groth CG, Korsgren O, Tibell A, et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet. 1994;344:1402–4.

    Article  CAS  PubMed  Google Scholar 

  19. Van der Laan LJ, Lockey C, Griffeth BC, et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature. 2000;407:90–4.

    Article  PubMed  Google Scholar 

  20. Cozzi E, Tallacchini M, Flanagan EB, et al. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – Chapter 1: Key ethical requirements and progress toward the definition of international regulatory framework. Xenotransplantation. 2009;16:203–14.

    Article  PubMed  Google Scholar 

  21. Matsumoto S, Tan P, Baker J, et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc. 2014;46:1992–5.

    Article  CAS  PubMed  Google Scholar 

  22. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  24. Takeuchi H, Nakatsuji N, Suemori H. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture. Sci Rep. 2014;4:4488. doi:10.1038/srep04488. Article number: 4488.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Matsumoto M.D., Ph.D. .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

ATP:

Adenosine triphosphate

DCD:

Deceased cardiac death

ES cells:

Embryonic stem cells

GLP-1:

Glucagon-like peptide-1

HTK solution:

Histidine-tryptophan-keto-glutarate solution

IL-1:

Interleukin-1

iPS cells:

Inducible pluripotent stem cells

PFC:

Perfluorocarbon

TNF:

Tumor necrosis factor

UW solution:

University of Wisconsin solution

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsumoto, S., Shimoda, M. (2015). Islet Cell Transplantation: New Techniques for an Old Disease. In: Latifi, R., Rhee, P., Gruessner, R. (eds) Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2671-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2671-8_42

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2670-1

  • Online ISBN: 978-1-4939-2671-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics