Skip to main content

Abstract

The twentieth century witnessed a tremendous explosion in the application of minimally invasive, catheter-based interventions in virtually all vascular bed territories, surpassing the number of performed open surgical cases by the end of that time period. This fact allowed a greater number of patients to be candidates for potentially life-saving surgical interventions, many of whom could not have tolerated the superior stresses of an open surgical procedure. The development of such technological advances that can provide significant benefits to our patients does require the participation of both industry and physicians; neither group by themselves could achieve these goals in isolation. Such cooperation is a new paradigm, first tested during the development of laparoscopy in the general surgery specialty and clearly expanded in vascular surgery. Whereas no major technological advances have been reported during the beginning of the twenty-first century in open vascular surgery techniques, major improvements in the endovascular arena have been described, from the technological and technical points of view. This chapter is a concise review of the most recent and important techniques and device developments involved in vascular interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction description of a new technic and a preliminary report of its application. Circulation. 1964;30:654–70.

    Article  CAS  PubMed  Google Scholar 

  2. Gruntzig A, Kumpe DA. Technique of percutaneous transluminal angioplasty with the Gruntzig ballon catheter. AJR Am J Roentgenol. 1979;132:547–52.

    Article  CAS  PubMed  Google Scholar 

  3. Katzen BT, Chang J. Percutaneous transluminal angioplasty with the Grüntzig balloon catheter. Radiology. 1979;130:623–6.

    Article  CAS  PubMed  Google Scholar 

  4. Freiman DB, Ring EJ, Oleaga JA, Berkowitz H. Transluminal angioplasty of the iliac, femoral, and popliteal arteries. Radiology. 1979;132:285–8.

    Article  CAS  PubMed  Google Scholar 

  5. Colapinto RF, Harries-Jones EP, Johnston KW. Percutaneous transluminal dilatation and recanalization in the treatment of peripheral vascular disease. Radiology. 1980;135:583–7.

    Article  CAS  PubMed  Google Scholar 

  6. Volodos NL, Karpovich IP, Shekhanin VE. A case of distant transfemoral endoprosthesis of the thoracic artery using a self-fixing synthetic prosthesis in traumatic aneurysm. Grudn Khir. 1988;6:84–6.

    PubMed  Google Scholar 

  7. Veith FJ, Marin ML, Cynamon J, Schonholz C, Parodi J. 1992: Parodi, Montefiore, and the first abdominal aortic aneurysm stent graft in the United States. Ann Vasc Surg. 2005;19:749–51.

    Article  PubMed  Google Scholar 

  8. Chuter T, Green RM, Ouriel K, Fiore WM. Transfemoral endovascular aortic graft placement. J Vasc Surg. 1993;18:185–97.

    Article  CAS  PubMed  Google Scholar 

  9. Yusuf SW, Baker DM, Chuter TA, Whitaker SC, Wenham PW, Hopkinson BR. Transfemoral endoluminal repair of abdominal aortic aneurysm with bifurcated graft. Lancet. 1994;344:650–1.

    Article  CAS  PubMed  Google Scholar 

  10. Yusuf SW, Whitaker SC, Chuter TA, Wenham PW, Hopkinson BR. Emergency endovascular repair of leaking aortic aneurysm. Lancet. 1994;344:1645.

    Article  CAS  PubMed  Google Scholar 

  11. Jain KM, Munn J, Rummel M, Vaddineni S, Longton C. Future of vascular surgery is in the office. J Vasc Surg. 2010;51:509–13.

    Article  PubMed  Google Scholar 

  12. Semenciew R, Morrison H, Wigle D, Cole W, Hill G. Recent trends in morbidity and mortality rates for abdominal aortic aneurysms. Rev Can Santé Publique. 1992;83:274–6.

    Google Scholar 

  13. Pearce WH, Shively VP. Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs. Ann N Y Acad Sci. 2006;1085:117–32.

    Article  CAS  PubMed  Google Scholar 

  14. Morris DR, Biros E, Cronin O, Kuivaniemi H, Golledge J. The association of genetic variants of matrix metalloproteinases with abdominal aortic aneurysm: a systematic review and meta-analysis. Heart. 2014;100:295–302.

    Article  PubMed  Google Scholar 

  15. LeFevre ML. U.S. Preventive Services Task Force. Screening for abdominal aortic aneurysm: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;161:281–90.

    Article  PubMed  Google Scholar 

  16. The UK Small Aneurysm Trial Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet. 1998;352:1649–55.

    Article  Google Scholar 

  17. Parodi JC, Palmaz JC, Barone HD. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg. 1991;5:491–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hinchliffe RJ, Ivancev K, Sonesson B, Malina M. “Paving and Cracking”: an endovascular technique to facilitate the introduction of aortic stent-grafts through stenosed iliac arteries. J Endovasc Ther. 2007;14:630–3.

    PubMed  Google Scholar 

  19. Jordan Jr WD, Mehta M, Varnagy D, Moore Jr WM, Arko FR, Joye J, et al. Aneurysm treatment using the Heli-FX aortic securement system global registry (ANCHOR) workgroup members. J Vasc Surg. 2014;60:885–92.

    Article  PubMed  Google Scholar 

  20. Lee JT, Lee GK, Chandra V, Dalman RL. Comparison of fenestrated endografts and the snorkel/chimney technique. J Vasc Surg. 2014;60:849–56.

    Article  PubMed  Google Scholar 

  21. Lee JT, Varu VN, Tran K, Dalman RL. Renal function changes after snorkel/chimney repair of juxtarenal aneurysms. J Vasc Surg. 2014;60:563–70.

    Article  PubMed  Google Scholar 

  22. Kirkwood ML, Saunders A, Jackson BM, Wang GJ, Fairman RM, Woo EY. Aneurysmal iliac arteries do not portend future iliac aneurysmal enlargement after endovascular aneurysm repair for abdominal aortic aneurysm. J Vasc Surg. 2011;53:269–73.

    Article  PubMed  Google Scholar 

  23. Hobo R, Laheij RJ, Buth J. The influence of aortic cuffs and iliac limb extensions on the outcome of endovascular abdominal aortic aneurysm repair. J Vasc Surg. 2007;45:79–85.

    Article  PubMed  Google Scholar 

  24. Rayt HS, Bown MJ, Lambert KV, Fishwick NG, McCarthy MJ, London NJ, et al. Buttock claudication and erectile dysfunction after internal iliac artery embolization in patients prior to endovascular aortic aneurysm repair. Cardiovasc Intervent Radiol. 2008;31:728e34.

    Google Scholar 

  25. Conrad MF, Adams AB, Guest JM, Paruchuri V, Brewster DC, LaMuraglia GM, et al. Secondary intervention after endovascular abdominal aortic aneurysm repair. Ann Surg. 2009;250:383–9.

    PubMed  Google Scholar 

  26. Mehta M, Sternbach Y, Taggert JB, Kreienberg PB, Roddy SP, Paty PS, et al. Long-term outcomes of secondary procedures after endovascular aneurysm repair. J Vasc Surg. 2010;52:1442–9.

    Article  PubMed  Google Scholar 

  27. Karthikesalingam A, Hinchliffe RJ, Holt PJ, Boyle JR, Loftus IM, Thompson MM. Endovascular aneurysm repair with preservation of the internal iliac artery using the iliac branch graft device. Eur J Vasc Endovasc Surg. 2010;39:285–94.

    Article  CAS  PubMed  Google Scholar 

  28. Naughton PA, Park MS, Kheirelseid EA, O’Neill SM, Rodriguez HE, Morasch MD, et al. A comparative study of bell-bottom technique versus hypogastric exclusion for the treatment of aneurysmal extension to the iliac bifurcation. J Vasc Surg. 2012;55:956–62.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Traul DK, Clair DG, Gray B, O’Hara PJ, Ouriel K. Percutaneous endovascular repair of infrarenal abdominal aortic aneurysms: a feasibility study. J Vasc Surg. 2000;32:770–6.

    Article  CAS  PubMed  Google Scholar 

  30. Malkawi AH, Hinchliffe RJ, Holt PJ, Loftus IM, Thompson MM. Percutaneous access for endovascular aneurysm repair: a systematic review. Eur J Vasc Endovasc Surg. 2010;39:676–82.

    Article  CAS  PubMed  Google Scholar 

  31. Nelson PR, Kracjer Z, Kansal N, Rao V, Bianchi C, Hashemi H, et al. A multicenter, randomized, controlled trial of totally percutaneous access versus open femoral exposure for endovascular aortic aneurysm repair (the PEVAR trial). J Vasc Surg. 2014;59:1181–94.

    Article  PubMed  Google Scholar 

  32. Manunga JM, Gloviczki P, Oderich GS, Kalra M, Duncan AA, Fleming MD, et al. Femoral artery calcification as a determinant of success for percutaneous access for endovascular abdominal aortic aneurysm repair. J Vasc Surg. 2013;58:1208–12.

    Article  PubMed  Google Scholar 

  33. Malina M, Resch T, Sonesson B. EVAR and complex anatomy: an update on fenestrated and branched stent grafts. Scand J Surg. 2008;97:195–204.

    CAS  PubMed  Google Scholar 

  34. Antoniou GA, Georgiadis GS, Antoniou SA, Kuhan G, Murray D. A meta-analysis of outcomes of endovascular abdominal aortic aneurysm repair in patients with hostile and friendly neck anatomy. J Vasc Surg. 2013;57:527–38.

    Article  PubMed  Google Scholar 

  35. Armstrong N, Burgers L, Deshpande S, Al M, Riemsma R, Vallabhaneni SR, et al. The use of fenestrated and branched endovascular aneurysm repair for juxtarenal and thoracoabdominal aneurysms: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2014;18(70):1–66.

    Article  Google Scholar 

  36. Rao R, Lane TR, Franklin IJ, Davies AH. Open repair versus fenestrated endovascular aneurysm repair of juxtarenal aneurysms. J Vasc Surg. 2015;61:242–55.

    Article  PubMed  Google Scholar 

  37. Lelienfeld DE, Gurdenson PD, Sprafka JM, et al. Epidemiology of aortic aneurysms: mortality trends in the United States 1951–1981. Atherosclerosis. 1987;7:637–43.

    Google Scholar 

  38. Fowkes FRG, Macintyre CCA, Rucjerley CV. Increasing incidence of aortic aneurysms in England and Wales. Brit Med J. 1989;298:33–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Quil DS, Colgan MP, Summer DS. Ultrasonic screening for the detection of abdominal aortic aneurysms. Surg Clin North Am. 1989;69:713–20.

    Google Scholar 

  40. Bengtsson H, Bergqvist D. Ruptured abdominal aortic aneurysm: a population-based study. J Vasc Surg. 1993;18:74–80.

    Article  CAS  PubMed  Google Scholar 

  41. Brown MJ, Sutton AJ, Bell PR, Sayers RD. A meta-analysis of 50 years of ruptured abdominal aortic aneurysm repair. Br J Surg. 2002;89:714–30.

    Article  Google Scholar 

  42. Veith FJ, Ohki T, Lipsitz EC, Suggs WD, Cynamon J. Endovascular grafts and other catheter directed techniques in the management of ruptured abdominal aortic aneurysms. Semin Vasc Surg. 2003;16:326–31.

    Article  PubMed  Google Scholar 

  43. Veith FJ, Lachat M, Mayer D, Malina M, Holst J, Mehta M, et al. Collected world and single center experience with endovascular treatment of ruptured abdominal aortic aneurysms. Ann Surg. 2009;250:818–24.

    Article  PubMed  Google Scholar 

  44. Larzon T, Lindgren R, Norgren L. Endovascular treatment of ruptured abdominal aortic aneurysms: a shift of the paradigm? J Endovasc Ther. 2005;12:548–55.

    Article  PubMed  Google Scholar 

  45. Hinchliffe RJ, Braithwaite BD, Hopkinson BR. The endovascular management of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2003;25:191–201.

    Article  CAS  PubMed  Google Scholar 

  46. Hechelhammer L, Lachat ML, Wildermuth S, Bettex D, Mayer D, Pfammatter T. Midterm outcome of endovascular repair of ruptured abdominal aortic aneurysms. J Vasc Surg. 2005;41:752–7.

    Article  PubMed  Google Scholar 

  47. Davenport DL, O’Keeffe SD, Minion DJ, Sorial EE, Endean ED, Xenos ES. Thirty-day NSQIP database outcomes of open versus endoluminal repair of ruptured abdominal aortic aneurysms. J Vasc Surg. 2010;51(2):305–9.

    Article  PubMed  Google Scholar 

  48. Rial R, Serrano Fj F, Vega M, Rodriguez R, Martin A, Mendez J, et al. Treatment of type II endoleaks after endovascular repair of abdominal aortic aneurysms: translumbar puncture and injection of thrombin into the aneurysm sac. Eur J Vasc Endovasc Surg. 2004;27:333–5.

    Article  CAS  PubMed  Google Scholar 

  49. Gambaro E, Abou-Zamzam Jr AM, Teruya TH, Bianchi C, Hopewell J, Ballard JL. Ischemic colitis following translumbar thrombin injection for treatment of endoleak. Ann Vasc Surg. 2004;18:74–8.

    Article  PubMed  Google Scholar 

  50. Evangelista A, Nienaber CA, editors. Pharmacotherapy in aortic disease, current cardiovascular therapy, vol. 7. Springer, Switzerland; 2015. P. 213–38.

    Google Scholar 

  51. Authors/Task Force members, Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, et al. ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult * The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2873–926.

    Article  Google Scholar 

  52. Xu SD, Huang FJ, Yang JF, Li ZZ, Wang XY. Endovascular repair of acute type B aortic dissection: early and mid-term results. J Vasc Surg. 2006;43:1090–5.

    Article  PubMed  Google Scholar 

  53. Nienaber CA, Kische S, Akin I, Rousseau H, Eggebrecht H, Fattori R, Rehders TC, Kundt G, Scheinert D, Czerny M, Kleinfeldt T, Zipfel B, Labrousse L, Ince H. Strategies for subacute/chronic type B aortic dissection: the Investigation Of Stent Grafts in Patients with type B Aortic Dissection (INSTEAD) trial 1-year outcome. J Thorac Cardiovasc Surg. 2010;140(6 Suppl):S101–8.

    Article  PubMed  Google Scholar 

  54. Nienaber CA, Kische S, Rousseau H, Eggebrecht H, Rehders TC, Kundt G, Glass A, Scheinert D, Czerny M, Kleinfeldt T, Zipfel B, Labrousse L, Fattori R. Ince H; INSTEAD-XL trial. Endovascular repair of type B aortic dissection: long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ Cardiovasc Interv. 2013;6:407–16.

    Article  CAS  PubMed  Google Scholar 

  55. Hagan PG, Nienaber CA, Isselbacher EM, Bruckman D, Karavite DJ, Russman PL, Evangelista A, Fattori R, Suzuki T, Oh JK, Moore AG, Malouf JF, Pape LA, Gaca C, Sechtem U, Lenferink S, Deutsch HJ, Diedrichs H, Marcos y Robles J, Llovet A, Gilon D, Das SK, Armstrong WF, Deeb GM, Eagle KA. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA. 2000;283:897–903.

    Article  CAS  PubMed  Google Scholar 

  56. Baliga RR, Nienaber C, Isselbacher EM, Eagle KA. Aortic dissection and related syndromes. New York: Springer Science & Business Media; 2007. p. 1.

    Google Scholar 

  57. Dake MD. An algorithmic strategy for the evaluation and management of type B dissections. Endovasc Today 2014;13:1–8

    Google Scholar 

  58. Kudo T, Mikamo A, Kurazumi H, Suzuki R, Morikage N, Hamano K. Predictors of late aortic events after Stanford type B acute aortic dissection. J Thorac Cardiovasc Surg. 2014;148:98–104.

    Article  PubMed  Google Scholar 

  59. Hackman DG. Medical management of peripheral arterial disease. JAMA. 2006;296:41–2.

    Article  Google Scholar 

  60. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation. 2006;113:e463–654.

    Article  PubMed  Google Scholar 

  61. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. Inter-Society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67.

    Article  PubMed  Google Scholar 

  62. Blair JM, Gewertz BL, Moosa H, Lu CT, Zarins CK. Percutaneous transluminal angioplasty vs. surgery for limb-threatening ischemia. J Vasc Surg. 1989;9:698–703.

    Article  CAS  PubMed  Google Scholar 

  63. Kudo T, Chandra F, Kwun WH, Haas B, Ahn S. Changing pattern of surgical revascularization for critical limb ischemia over 12 years: endovascular vs. open bypass surgery. J Vasc Surg. 2006;44:304–13.

    Article  PubMed  Google Scholar 

  64. Jamieson C. The definition of critical ischaemia of a limb. Br J Surg. 1982;69:S2.

    Article  Google Scholar 

  65. Igari K, Kudo T, Uchiyama H, Toyofuku T, Inoue Y. Indocyanine green angiography for the diagnosis of peripheral arterial disease with isolated infrapopliteal lesions. Ann Vasc Surg. 2014;28:1479–84.

    Article  PubMed  Google Scholar 

  66. Braun JD, Trinidad-Hernandez M, Perry D, Armstrong DG, Mills JL. Early quantitative evaluation of indocyanine green angiography in patients with critical limb ischemia. J Vasc Surg. 2013;57:1213–8.

    Article  PubMed  Google Scholar 

  67. Braun JD, Rajguru P, Armstrong DG, Mills JL. Indocyanine green angiographic criteria using ingress and ingress rate to detect SVS lower extremity threatened limb classification (WIfI) grade 3 ischemia. J Vasc Surg. 2013;60(2):538.

    Article  Google Scholar 

  68. Montero-Baker M, Morelli-Alvarez L, Helton K, Au-Yeu KY. The use of micro-oxygen sensors (MOXYs) to determine dynamic relative oxygen indices in the foot of patients with critical limb ischemia (CLI) during an endovascular therapy: the first-in-man “Si Se Puede” study. J Vasc Surg. 2014;60(2):548–9.

    Article  Google Scholar 

  69. Kichikawa K, Uchida H, Yoshioka T, Maeda M, Nishimine K, Kubota Y, et al. Iliac artery stenosis and occlusion: preliminary results of treatment with Gianturco expandable metallic stents. Radiology. 1990;177:799–802.

    Article  CAS  PubMed  Google Scholar 

  70. Klein WM, Graaf YVD, Seegers J, Spithoven JH, Buskens E, Baal JGV, et al. Dutch iliac stent trial: long-term results in patients randomized for primary or selective stent placement 1. Radiol Radiol Soc N Am. 2006;238:734–44.

    Google Scholar 

  71. Rzucidlo EM, Powell RJ, Zwolak RM, Fillinger MF, Walsh DB, Schermerhorn ML, et al. Early results of stent-grafting to treat diffuse aortoiliac occlusive disease. YMVA. 2003;37:1175–80.

    Google Scholar 

  72. Sabri SS, Choudhri A, Orgera G, Arslan B, Turba UC, Harthun NL, et al. Outcomes of covered kissing stent placement compared with bare metal stent placement in the treatment of atherosclerotic occlusive disease at the aortic bifurcation. J Vasc Interv Radiol. 2010;21:995–1003.

    Article  PubMed  Google Scholar 

  73. Mwipatayi BP, Thomas S, Wong J, Temple SEL, Vijayan V, Jackson M, et al. A comparison of covered vs bare expandable stents for the treatment of aortoiliac occlusive disease. J Vasc Surg. 2011;54:1561–70.

    Article  PubMed  Google Scholar 

  74. Jim J, Owens PL, Sanchez LA, Rubin BG. Population-based analysis of inpatient vascular procedures and predicting future workload and implications for training. YMVA. J Vasc Surg. 2012;55:1394–9. Discussion: 1399–400.

    Article  PubMed  Google Scholar 

  75. Rocha-Singh KJ, Jaff MR, Crabtree TR, Bloch DA, Ansel G, On Behalf of VIVA Physicians. Inc Performance goals and endpoint assessments for clinical trials of femoropopliteal bare nitinol stents in patients with symptomatic peripheral arterial disease. Cathet Cardiovasc Intervent. 2007;69:910–9.

    Article  Google Scholar 

  76. Conte MS, Geraghty PJ, Bradbury AW, Hevelone ND, Lipsitz SR, Moneta GL, et al. Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. J Vasc Surg. 2009;50:1462–3.

    Article  PubMed  Google Scholar 

  77. Moses JW, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349:1315–23.

    Article  CAS  PubMed  Google Scholar 

  78. Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, et al. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results. Circ Cardiovasc Interv. 2011;4:495–504.

    Article  CAS  PubMed  Google Scholar 

  79. Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, et al. Sustained safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year follow-up from the Zilver PTX randomized and single-arm clinical studies. JAC J Am Coll Cardiol. 2013;61:2417–27.

    Article  CAS  Google Scholar 

  80. Tepe G, Zeller T, Albrecht T, Heller S, Schwarzwälder U, Beregi J-P, et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med. 2008;358:689–99.

    Article  CAS  PubMed  Google Scholar 

  81. Ansel G. Drug elution, data, and decisions. In Phillips JA, editor. Entovascular Today; 2014. p. 1–6.

    Google Scholar 

  82. Tepe G, Laird J, Schneider P, Brodmann M, Krishnan P, Micari A, et al. Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and/or popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial. Circulation. 2015;131:495–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Iyer SS, Dorros G, Zaitoun R, Lewin RF. Retrograde Recanalization of an occluded posterior tibial artery by using a posterior tibial cutdown: two case reports. Cathet Cardiovasc Diagn. 1990;20:251–3.

    Article  CAS  PubMed  Google Scholar 

  84. Ozawa N. A new understanding of chronic total occlusion from a novel PCI technique that involves a retrograde approach to the right coronary artery via a septal branch and passing of the guidewire to a guiding catheter on the other side of the lesion. Catheter Cardiovasc Interv. 2006;68:907–13.

    Article  PubMed  Google Scholar 

  85. Mustapha JA, Saab F, McGoff T, Heaney C, Diaz-Sandoval L, Sevensma M, Karenko B. Tibio‐pedal arterial minimally invasive retrograde revascularization in patients with advanced peripheral vascular disease: The TAMI technique, original case series. Catheter Cardiovasc Interv. 2014;83:987–94.

    Article  CAS  PubMed  Google Scholar 

  86. El-Sayed HF. Retrograde pedal/tibial artery access for treatment of infragenicular arterial occlusive disease. Methodist Debakey Cardiovasc J. 2013;9:73–8.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Montero-Baker M, Schmidt A, Bräunlich S, Ulrich M, Thieme M, Biamino G, et al. Retrograde approach for complex popliteal and tibioperoneal occlusions. J Endovasc Ther. 2008;15:594–604.

    Article  PubMed  Google Scholar 

  88. Hirsch AT, Haskal CJ, Hertzer NR, Bakal CW, et al. ACC/AHA Guidelines for the Management of Patients with Peripheral Arterial Disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Associations for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease)—summary of recommendation. J Vasc Interv Radiol. 2006;17:1383–97.

    Article  PubMed  Google Scholar 

  89. Sinkowich SJ, Gottlieb I. Thromboangiitis obliterans—the conservative treatment by Bier's hyperemia suction apparatus. JAMA. 1917;68:961–3.

    Google Scholar 

  90. Herrmann LG, Reid MR. The conservative treatment of arteriosclerotic peripheral vascular diseases. Ann Surg. 1934;100:750–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Mehlsen J, Himmelstrup H, Himmelstrup B, Winther K, Trap-Jensen J. Beneficial effects of intermittent suction and pressure treatment in intermittent claudication. Angiology. 1993;44:16–20.

    Article  CAS  PubMed  Google Scholar 

  92. Delis KT, Nicolaides AN, Wolfe JHN, Stansby G. Improved walking ability and ankle brachial pressure indices in symptomatic peripheral vascular disease with intermittent pneumatic compression: a prospective controlled study with one-year follow-up. J Vasc Surg. 2000;31:650–61.

    Article  CAS  PubMed  Google Scholar 

  93. Kakkos S, Geroulakos G, Nicolaides A. Improvement in the walking ability in intermittent claudication with supervised exercise and pneumatic foot and calf compression : results at 6 months of a randomized controlled trial. Presented at the 18th Annual meeting of the European Society of Vascular Surgery, Innisbruck, Austria; 2004.

    Google Scholar 

  94. Delis KT, Nicolaides AN. Effect of intermittent pneumatic compression in patients with arterial claudication: a prospective randomized controlled study with 1-year follow up. Ann Surg. 2005;241:431–41.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Provost P, Lam JY, Lacoste L, Merhi Y, Waters D. Endothelium-derived nitric oxide attenuates neutrophil adhesion to endothelium under arterial flow conditions. Arterioscler Thromb. 1994;14:331–5.

    Article  CAS  PubMed  Google Scholar 

  96. Konstantinos D, Nicolaides AN. Effect of intermittent pneumatic compression of foot and calf on walking distance, hemodynamics, and quality od life in patients with arterial claudication. Ann Surg. 2005;241:39.

    Google Scholar 

  97. Ramaswami G, D’Ayala M, Hollier LH, Deutsch R, McElhinney AJ. Rapid foot and calf compression increases walking distance in patients with intermittent claudication: Results of a randomized study. J Vasc Surg. 2005;41(5):794–800.

    Article  PubMed  Google Scholar 

  98. Labropoulos N, Leon RL, Bhatti A, Melton S, Kang SS, Mansour AM, Borge M. Hemodynamics effects of intermittent pneumatic compression in patients with critical limb ischemia. J Vasc Surg. 2005;42:710–6.

    Article  PubMed  Google Scholar 

  99. Andreozzi GM, Cordova RM, Scomparin A, Martini R, D’Eri A, Andreozzi F. Quality of life working group on vascular medicine of SIAPAV. Quality of life in chronic venous insufficiency. an Italian pilot study of the Triveneto Region. Int Angiol. 2005;24:272–7.

    CAS  PubMed  Google Scholar 

  100. Callam MJ. Epidemiology of varicose veins. Br J Surg. 1994;81:167–73.

    Article  CAS  PubMed  Google Scholar 

  101. Almgren B, Eriksson E. Valvular incompetence in superficial, deep and perforator veins of limbs with varicose veins. Acta Chir Scand. 1990;156:69–74.

    CAS  PubMed  Google Scholar 

  102. Van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T. Endovenous therapy of lower extremity varicosities: a meta-analysis. J Vasc Surg. 2009;49:230–9.

    Article  PubMed  Google Scholar 

  103. O’Hare JL, Vandenbroeck CP, Whitman B, Campbell B, Heather BP, Earnshaw JJ. Joint Vascular Research Group: a prospective evaluation of the outcome after small saphenous varicose vein surgery with one-year follow-up. J Vasc Surg. 2008;48:669–73.

    Article  PubMed  Google Scholar 

  104. Allegra C, Antignani PL, Carlizza A. Recurrent varicose veins following surgical treatment: our experience with five years follow-up. Eur J Vasc Endovasc Surg. 2007;33:751–6.

    Article  CAS  PubMed  Google Scholar 

  105. Shepherd AC, Gohel MS, Brown LC, Metcalfe MJ, Hamish M, Davies AH. Randomized clinic trial of VNUS ClosureFAST radiofrequency ablation versus laser for varicose veins. Br J Surg. 2010;97:810–8.

    Article  CAS  PubMed  Google Scholar 

  106. Proebstle TM, Gul D, Kargl A, Knop J. Endovenous laser treatment of the lesser saphenous vein with a 940-nm diode laser: early results. Dermatol Surg. 2003;29:357–61.

    PubMed  Google Scholar 

  107. Creton D, Pichot O, Sessa C, Proebstle TM. Radiofrequency-powered segmental thermal obliteration carried out with the ClosureFast procedure: results at 1 year. Ann Vasc Surg. 2010;24:360–6.

    Article  PubMed  Google Scholar 

  108. Boersma D, Van Eekeren RRJP, Werson DAB, De Vries JPPM, Reijnen MMJP. Mechanochemical endovenous ablation of small saphenous vein insufficiency using the ClariVein® device: one-year results of a prospective series. Eur J Vasc Endovasc Surg. 2013;45:299–303.

    Article  CAS  PubMed  Google Scholar 

  109. Van Eekeren RRJP, Boersma D, Elias S, Holewijn S, Werson DAB, De Vries JPPM, Reijnen MMJP. Mechanochemical endovenous ablation of great saphenous vein incompetence using the ClariVein® device: a safety study. J Endovasc Ther. 2011;18:328–34.

    Article  PubMed  Google Scholar 

  110. Bishawi M, Bernstein R, Boter M, Draugh D, Gould C, Hamilton C, Koziarski J. Mechanochemical ablation in patients with chronic venous disease: a prospective multicenter report. Phlebology. 2013;29:397–400.

    Article  PubMed  Google Scholar 

  111. Almeida JI, Javier JJ, Mackay EG, Bautista C, Cher DJ, Proebstle TM. Two-year follow-up of first human use of cyanoacrylate adhesive for treatment of saphenous vein incompetence. Phlebology. 2014 Apr 30 [Epub ahead of print].

    Google Scholar 

  112. Goldhaber S, Morrison R. Pulmonary embolism and deep vein thrombosis. Circulation. 2002;106:1436.

    Article  PubMed  Google Scholar 

  113. Ashrani AA, Heit JA. Incidence and cost burden of post-thrombotic syndrome. J Thromb Thrombolysis. 2009;28:465–76.

    Article  PubMed  Google Scholar 

  114. Brandjes DP, Büller HR, Heijboer H, Huisman MV, de Rijk M, Jagt H. Randomized trial of effect of compression stocking in patients with symptomatic proximal vein thrombosis. Lancet. 1996;349:759–62.

    Article  Google Scholar 

  115. Prandoni P, Lensing AWA, Cogo A, Cuppini S, Villalta S, Carta M, et al. The long-term clinical course of acute deep venous thrombosis. Ann Intern Med. 1996;125:1–7.

    Article  CAS  PubMed  Google Scholar 

  116. Kahn SR, Solymoss S, Lamping DL, Abenhaim L. Long-term outcomes after deep vein thrombosis: postphlebetic syndrome and quality of life. J Gen Intern Med. 2000;15:425–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Grilli CJ, McGarry M, Ali M, et al. Aggressive management of chronic DVT: technical and clinical outcomes. Presented at: SIR 37th Annual Scientific Meeting; March 24–29, 2012; San Francisco, CA.

    Google Scholar 

  118. Delis KT, Bountouroglou D, Mansfield AO. Venous claudication in iliofemoral thrombosis: long-term effects on venous hemodynamics, clinical status, and quality of life. Ann Surg. 2004;239:118–26.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Akesson H, Brudin L, Dahlstrom JA, Eklof B, Ohlin P, Plate G. Venous function assessed during a 5 year period after acute ilio-femoral venous thrombosis treated with anticoagulation. Eur J Vasc Surg. 1990;4:43–8.

    Article  CAS  PubMed  Google Scholar 

  120. Comerota AJ, Gravett MH. Iliofemoral venous thrombosis. J Vasc Surg. 2007;46:1065–76.

    Article  PubMed  Google Scholar 

  121. Meissner MH, Manzo RA, Bergelin RO, Markel A, Strandness Jr DE. Deep venous insufficiency: the relationship between lysis and subsequent reflux. J Vasc Surg. 1993;18:596–605.

    Article  CAS  PubMed  Google Scholar 

  122. Comerota AJ. The ATTRACT trial: rationale for early intervention for iliofemoral DVT. Perspect Vasc Surg Endovasc Ther. 2009;21:221–4.

    Article  PubMed  Google Scholar 

  123. Kudo S. Thrombolysis with ultrasound effect. Tokyo Jikeikai Med J. 1989;104:1005.

    Google Scholar 

  124. Blinc A, Francis CW, Trudnowski JL, Carstensen EL. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood. 1993;81:2636–43.

    CAS  PubMed  Google Scholar 

  125. Braaten JV, Goss RA, Francis CW. Ultrasound reversibly disaggregates fibrin fibers. Thromb Haemost. 1997;78:1063–8.

    CAS  PubMed  Google Scholar 

  126. Tachibana K, Tachibana S. Ultrasound energy for enhancement of fibrinolysis and drug delivery: special emphasis on the use of a transducer-tipped ultrasound system. In: Siegel RJ, editor. Ultrasound angioplasty. Boston: Kluwer; 1996. p. 121–33.

    Chapter  Google Scholar 

  127. Atar S, Luo H, Nagai T, Sahm R, Fishbein M, Siegel R. Arterial thrombus dissolution in vivo using a transducer-tipped, high frequency ultrasound catheter and local low dose urokinase delivery. J Endovasc Ther. 2001;8:282–90.

    Article  CAS  PubMed  Google Scholar 

  128. Tarry WC, Makhoul RG, Tisnado J, Posner MP, Sobel M, Lee HM. Catheter-directed thrombolysis following vena cava filtration for severe deep venous thrombosis. Ann Vasc Surg. 1994;8:583–90.

    Article  CAS  PubMed  Google Scholar 

  129. Comerota AJ, Katz ML, White JV. Thrombolytic therapy for acute deep venous thrombosis: how much is enough? Cardiovasc Surg. 1996;4:101–4.

    Article  CAS  PubMed  Google Scholar 

  130. Radomski JS, Jarrell BE, Carabasi RA, Yang SL, Koolpe H. Risk of pulmonary embolus with inferior vena cava thrombosis. Am Surg. 1987;53:97–101.

    CAS  PubMed  Google Scholar 

  131. Fink AM, Herzog N, Borst-Krafek B, Jurecka W, Steiner A. Long-term mortality in patients with thrombosis of the inferior vena cava, iliac and femoral veins. Eur J Vasc Endovasc Surg. 2006;31:200–3.

    Article  CAS  PubMed  Google Scholar 

  132. Usoh F, Hingorani A, Ascher E, Shiferson A, Patel N, Gopal K, et al. Prospective randomized study comparing the clinical outcomes between inferior vena cava Greenfield and TrapEase filters. J Vasc Surg. 2010;52:394–9.

    Article  PubMed  Google Scholar 

  133. Ray Jr CE, Kaufman JA. Complications of inferior vena cava filters. Abdom Imaging. 1996;21:368–74.

    Article  PubMed  Google Scholar 

  134. Kamel Abdel Aal AM, Hamed MF, Saddekni S, Osman S, Zarzour J. Treatment of acute inferior vena cava and iliac vein thrombosis with pharmacomechanical thrombectomy using simultaneously operating “kissing” Trellis-8 thrombolysis catheters. J Endovasc Ther. 2011;18:739–43.

    Article  PubMed  Google Scholar 

  135. Saettele MR, Morelli JN, Chesis P, Wible BC. Use of a Trellis device for endovascular treatment of venous thrombosis involving a duplicated inferior vena cava. Cardiovasc Intervent Radiol. 2013;36:1699–703.

    Article  PubMed  Google Scholar 

  136. Branco BC, Montero-Baker M, Espinoza E, Gamero M, Zea R, Labropoulos N, León LR. Pharmacomechanical thrombolysis in the management of acute inferior vena cava filter occlusion using the Trellis-8 device. J Endovas Ther. 2015;22(1):99–104.

    Article  Google Scholar 

  137. O’Sullivan GJ, Sheehan J, Lohan D, McCann-Brown JA. Iliofemoral venous stenting extending into the femoral region: initial clinical experience with the purpose-designed Zilver Vena stent. J Cardiovasc Surg. 2013;54:255–61.

    Google Scholar 

  138. Rutherford RB. Prophylactic indications for vena cava filters: critical appraisal. Semin Vasc Surg. 2005;18:158–65.

    Article  PubMed  Google Scholar 

  139. Tschoe M, Kim HS, Brotman DJ, Streiff MB. Retrievable vena cava filters: a clinical review. J Hosp Med. 2009;4:441–8.

    Article  PubMed  Google Scholar 

  140. Grande WJ, Trerotola SO, Reilly PM, Grande WJ, Trerotola SO, Reilly PM, Clark TW, Soulen MC, Patel A, et al. Experience with the recovery filter as a retrievable inferior vena cava filter. J Vasc Interv Radiol. 2005;16:1189–93.

    Article  PubMed  Google Scholar 

  141. Looby S, Given MF, Geoghegan T, McErlean A, Lee MJ. Gunther Tulip retrievable inferior vena caval filters: indications, efficacy, retrieval, and complications. Cardiovasc Intervent Radiol. 2007;30:59–65.

    Article  CAS  PubMed  Google Scholar 

  142. Dentali F, Ageno W, Imberti D. Retrievable vena cava filters: clinical experience. Curr Opin Pulm Med. 2006;12:304–9.

    PubMed  Google Scholar 

  143. Joels CS, Sing RF, Heniford BT. Complications of inferior vena cava filters. Am Surg. 2003;69:654.

    PubMed  Google Scholar 

  144. Becker DM, Philbrick JT, Selby JB. Inferior vena cava filters. Indications, safety, effectiveness. Arch Intern Med. 1992;152:1985.

    Article  CAS  PubMed  Google Scholar 

  145. Doody O, Given MF, Kavnoudias H, Street M, Thomson KR, Lyon SM. Initial experience in 115 patients with the retrievable Cook Celect vena cava filter. J Med Imaging Radiat Oncol. 2009;53:64–8.

    Article  CAS  PubMed  Google Scholar 

  146. Durack JC, Westphalen AC, Kekulawela S, Bhanu SB, Avrin DE, Gordon RL, et al. Perforation of the IVC: Rule rather than exception after longer indwelling times for the Gunther Tulip and Celect retrievable filters. Cardiovasc Intervent Radiol. 2012;35(2):299–308.

    Article  PubMed  Google Scholar 

  147. Moore PS, Andrews JS, Craven TE, Davis RP, Corriere MA, Godshall CJ, et al. Trends in vena caval interruption. J Vasc Surg. 2010;52:118–25.

    Article  PubMed  Google Scholar 

  148. Corriere MA, Sauve KJ, Ayerdi J, Craven BL, Stafford JM, Geary RL, et al. Vena cava filters and inferior vena cava thrombosis. J Vasc Surg. 2007;45:789–94.

    Article  PubMed  Google Scholar 

  149. Kalva SP, Wicky S, Waltman AC, Athanasoulis CA. TrapEase vena cava filter: experience in 751 patients. J Endovasc Ther. 2006;13:365–72.

    Article  PubMed  Google Scholar 

  150. Nazzal M, Chan E, Nazzal M, Abbas J, Erikson G, Sediqe S, et al. Complications related to inferior vena cava filters: a single-center experience. Ann Vasc Surg. 2010;24:480–6.

    Article  PubMed  Google Scholar 

  151. Kim HS, Young MJ, Narayan AK, Hong K, Liddell RP, Streiff MB. A comparison of clinical outcomes with retrievable and permanent inferior vena cava filters. J Vasc Interv Radiol. 2008;19:393–9.

    Article  PubMed  Google Scholar 

  152. Johnson MS, Benenati JF, Kaufman JA, et al. The safety and effectiveness of the retrievable OptionTM vena cava filter: a United States, Prospective Multicenter Clinical Study. J Vasc Intervent Radiol. 2010;21:1173–84.

    Article  Google Scholar 

  153. Singer M, Wang S. Modeling flow past a tilted vena cava filter. J Med Dev 2009. https://e-reports-ext.llnl.gov/pdf/375100.pdf.

  154. Smouse HB, Mendes R, Bosiers M, Van Ha TG, Crabtree T. The RETRIEVE Trial: safety and effectiveness of the retrievable Crux Vena Cava Filter. J Vasc Interv Radiol. 2013;24:609–62.

    Article  PubMed  Google Scholar 

  155. Thors A, Muck P. Resorbable inferior vena cava filters: trial in an in-vivo porcine model. J Vasc Interv Radiol. 2011;22:330–5.

    Article  PubMed  Google Scholar 

  156. Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, et al. The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2008;29:2276–315.

    Article  CAS  PubMed  Google Scholar 

  157. Gray HH, Morgan JM, Paneth M, Miller GA. Pulmonary embolectomy for acute massive pulmonary embolism: an analysis of 71 cases. Br Heart J. 1988;60:196–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Mattox KL, Feldtman RW, Beall AC, DeBakey ME. Pulmonary embolectomy for acute massive pulmonary embolism. Ann Surg. 1982;195:726–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Leacche M, Unic D, Goldhaber SZ, et al. Modern surgical treatment of massive pulmonary embolism: results in 47 consecutive patients after rapid diagnosis and aggressive surgical approach. J Thorac Cardiovasc Surg. 2006;131:503–4.

    Article  Google Scholar 

  160. Greenfield LJ, Kimmell GO, McCurdy 3rd WC. Transvenous removal of pulmonary emboli by vacuum-cup catheter technique. J Surg Res. 1969;9:347–52.

    Article  CAS  PubMed  Google Scholar 

  161. Chamsuddin A, Nazzal L, Kang B, Best I, Peters G, Panah S, Martin L, Lewis C, Zeinati C, Ho JW, Venbrux AC. Catheter-directed thrombolysis with the Endowave system in the treatment of acute massive pulmonary embolism: a retrospective multicenter case series. J Vasc Interv Radiol. 2008;19:372–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis R. Leon Jr. M.D., R.V.T., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montero-Baker, M., Braun, J.D., Weinkauf, C., Leon, L.R. (2015). Technological Advances in Endovascular Surgery. In: Latifi, R., Rhee, P., Gruessner, R. (eds) Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2671-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2671-8_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2670-1

  • Online ISBN: 978-1-4939-2671-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics