Skip to main content

Selecting Scenarios for Deterministic Fire Safety Engineering Analysis: Life Safety for Occupants

  • Chapter
SFPE Handbook of Fire Protection Engineering

Abstract

In many cases, the principle goal of a fire safety engineering (FSE) design is the life safety of the users of a structure. There are, however, other potential fire safety goals to consider, e.g., property protection, continuity of operations, protection of the environment and protection of cultural heritage [1]. Whatever the goal, users of the building, both building managers and occupants, will have a role in its achievement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Watts, J.M. (2008). Systems Approach to Fire-Safe Building Design, NFPA Handbook (20th ed), 1–159.

    Google Scholar 

  2. ISO/TS 16733:2006 – Selection of design fire scenarios and design fires (2006) Geneva: ISO.

    Google Scholar 

  3. BBRAD 1 - Boverkets allmänna råd om analytisk dimensionering av byggnaders brandskydd, BFS 2011:26 med ändringar t.o.m. BFS 2012:13 (2011) Karlskrona: Boverket.

    Google Scholar 

  4. INSTA/prTS 950 - Fire Safety Engineering - Verification of fire safety design in buildings (2013) Inter Nordic Standardisation Organisation

    Google Scholar 

  5. Frantzich, H. (1998). Uncertainty and Risk Analysis in Fire Safety Engineering. Report 1016, Lund: Department of Fire Safety Engineering, Lund University.

    Google Scholar 

  6. Paté-Cornell, M. E. (1996). Uncertainties in risk analysis: six levels of treatment. Reliability Engineering and Systems Safety, 54(2), 95–111.

    Article  Google Scholar 

  7. Sime, J.D. (1985). Movement towards the familiar - Person and place affiliation in a fire entrapment setting. Environment and Behaviour, 17(6), 697–724.

    Article  Google Scholar 

  8. SFPE (2007) SFPE Engineering Guide to Performance-Based Design (2nd ed.). Bethesda, MD: Society of Fire Protection Engineers.

    Google Scholar 

  9. BBR19 - Regelsamling för byggande, Boverkets byggregler, BFS 2011:6 med ändringar t.o.m. BFS 2011:26 (2011) Karlskrona: Boverket.

    Google Scholar 

  10. NFPA 101: Life Safety Code® (2012). Quincy, MA: National Fire Protection Association.

    Google Scholar 

  11. NKB (1994). Funktionsbestemte brandkrav og teknisk vejledning for beregningsmeassig eftervisning, NKB Utskotts- och arbetsrapporter 1994:07, Helsinki: NKB.

    Google Scholar 

  12. ISO/TS 13571:2002 - Life-threatening components of fire - Guidelines for the estimation of time available for escape using fire data. (2002) Geneva: ISO.

    Google Scholar 

  13. van Hees, P., Nilsson, D., & Berggren, E. (2009). Simulation of critical evacuation conditions for a fire scenario involving cables and comparison of two different cables. Lund: Department of Fire Safety Engineering and Systems Safety, Lund University.

    Google Scholar 

  14. Gwynne, S., Kuligowski, E., & Nilsson, D. (2012). Representing Evacuation Behaviour in Engineering Terms. Journal of Fire Protection Engineering, 22(2), 133–150.

    Article  Google Scholar 

  15. Nilsson, D. (2009). Exit choice in fire emergencies - Influencing choice of exit with flashing lights, Report 1040, Lund: Department of Fire Safety Engineering and Systems Safety, Lund University.

    Google Scholar 

  16. McClintock, T., Shields, T.J., Reinhardt-Rutland, A.H., & Leslie, J.C. (2001). A behavioural solution to the learned irrelevance of emergency exit signage. Proceedings of the 2 nd International Symposium on Human Behaviour in Fire, London, UK, pp. 23–33.

    Google Scholar 

  17. Bruck D. & Brennan P. (2001). Recognition of fire cues during sleep. Proceedings of the 2 nd International Symposium on Human Behaviour in Fire, London, UK, pp. 241–252.

    Google Scholar 

  18. Ball, M., & Bruck, D. (2004). The effect of alcohol upon response to different fire alarm signals in sleeping young adults. Proceedings of the 3 rd International Symposium on Human Behaviour in Fire, Belfast, UK, pp. 291–302.

    Google Scholar 

  19. Anderson, B.M., Stevens, M.C, Meda, S.A., Jordan K., Calhoun, V.D., & Pearlson, G.D. (2010). Functional Imaging of Cognitive Control During Acute Alcohol Intoxication, Alcoholism: Clinical & Experimental Research; DOI: 10.1111/j.1530-0277.2010.01332.x.

    Google Scholar 

  20. Latané, B.,& Darley, J.M. (1968). Group Inhibition of Bystander Intervention in Emergencies, Journal of Personality and Social Psychology, 10(3), 215–221.

    Google Scholar 

  21. Swartz, J.A. (1979). Human Behavior in the Beverly Hills Fire. Fire Journal, 73(3), 73–74, 108.

    Google Scholar 

  22. Drysdale, D. (2011). An Introduction to Fire Dynamics.(3rd ed.) West Sussex: John Wiley & Sons, Ltd.

    Google Scholar 

  23. Ingason, H., Kumm, M., Nilsson, D., Lönnermark, A., Claesson, A., Li, Y.Z., Fridolf, K., Åkerstedt, R., Nyman, H., Dittmer, T., Forsén, R., Janzon, B., Meyer, G., Bryntse, A., Carlberg, T., Newlove-Eriksson. L., Palm, A. (2012). The METRO project - Final report. SiST 2012:8, Västerås: School of Sustainable Development of Society and Technology, Mälardalen University.

    Google Scholar 

  24. Sekizawa, A., Ebihara, M., & Notake, H. (2003). Development of Seismic-induced Fire Risk Assessment Method for a Building. Fire Safety Science – Proceedings of the 7 th International Symposium, International Association for Fire Safety Science, pp. 309–320.

    Google Scholar 

  25. Kim, J.K., Park, H. & Meacham, B.J. (2013). “Fire Performance of Earthquake-Damaged Buildings: Overview and Preliminary Analysis of Full-Building Earthquake and Fire Tests,” Proceedings, Interflam 2013, Interscience Communication, Ltd., London, UK, 1407–1418.

    Google Scholar 

  26. Hamby, D.M. (1995). A Comparison of Sensitivity Analysis Techniques. Health Physics, 68(2), 195–204.

    Article  Google Scholar 

  27. Levin, B.M. (1984). Human Behavior in Fire: What We Know Now. SFPE Technology Report 84–3, Boston, MA: Society of Fire Protection Engineers.

    Google Scholar 

  28. Purser, D.A. and Bensilum, M. (2001). Quantification of behaviour for engineering design standards and escape time calculations, Safety Science, 38, 157–182.

    Article  Google Scholar 

  29. Harne (1998). Polisen utan spår efter pyromanen [Police without any trace after pyromaniac], Aftonbladet, 24th December, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Nilsson, D., Fahy, R. (2016). Selecting Scenarios for Deterministic Fire Safety Engineering Analysis: Life Safety for Occupants. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_57

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics