Skip to main content

The Role of Long Non-coding RNAs in Abiotic Stress Tolerance in Plants

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

Non-coding RNAs (ncRNAs) are a family of regulatory RNAs, which do not encode mRNA, rRNA or tRNA, found in a variety of organisms including plants. Different classes of ncRNAs have been identified based on their length and their position in the genome, including small ncRNAs (microRNAs and small-interfering RNAs), natural antisense transcripts (NATs), and long intronic/intergenic ncRNAs (lncRNAs, 200nt or longer). Recent advances in next-generation sequencing technologies and computational analysis for transcriptome profiling have led to the genome-wide identification of ncRNAs. Functional characterization of these ncRNAs has implicated them to play a role in a wide range of cellular functions, such as epigenetic silencing, transcriptional regulation, and RNA metabolism. Emerging evidence suggest that several lncRNAs play important roles in many fundamental biological processes including growth and development as well as abiotic stress responses. Recent findings on the roles of lncRNAs in the aforementioned plant processes are summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Aung K, Lin SI, Wu CC et al (2006) pho2, a phosphate over-accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bari R, Datt Pant B, Stitt M et al (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben Amor B, Wirth S, Merchan F et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Brunn-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 30:1185–1190

    Article  Google Scholar 

  • Burleigh SH, Harrison MJ (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16:1047–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI et al (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho J, Koo DH, Nam Y et al (2005) Isolation and characterization of cDNA clones expressed under male sex expression conditions in a monoecious cucumber plant (Cucumis sativus L. cv. winter long). Euphytica 146:271–281

    Article  CAS  Google Scholar 

  • Clamp M, Fry B, Kamal M et al (2007) Distinguishing protein coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A 104:19428–19433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conley B, Jordan IK (2012) Epigenetic regulation of human cis-natural antisense transcripts. Nucleic Acids Res 40:1438–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras-Cubas C, Palomar M, Arteaga-Vazquez M et al (2012) Non-coding RNAs in the plant response to abiotic stress. Planta 236:943–958

    Article  CAS  PubMed  Google Scholar 

  • Crespi MD, Jurkevitch E, Poiret M et al (1994) Enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J 13:5099–5112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dai XY, Yu JI, Zhao Q et al (2004) Non-coding RNA for ZM401, a pollen-specific gene of Zea Mays. Acta Bot Sin 46:497–504

    CAS  Google Scholar 

  • de Alba AEM, Parent J-S et al (2013) Small RNA-mediated control of development in plants. In: Grafi G, Ohad N (eds) Epigenetic memory and control in plants. Springer, Heidelberg, pp 177–199

    Chapter  Google Scholar 

  • de Lucia F, Crevillen P, Jones AM et al (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105:16831–16836

    Article  PubMed Central  PubMed  Google Scholar 

  • Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dieci G, Fiorino G, Castelnuova M et al (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Lu Q, Ouyang Y et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci U S A 109:2654–2659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI et al (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 12:699–712

    Article  Google Scholar 

  • Gibb EA, Vucic EA, Enfield KS et al (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6:e25915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Rodriguez-Enriquez J (2012) Emerging roles for non-coding RNAs in male reproductive development in flowering plants. Biomolecules 2:608–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grennan AK (2008) Phosphate accumulation in plants: signaling. Plant Physiol 148:3–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henz SR, Cumbie JS, Kasschau KD et al (2007) Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol 144:1247–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang W, Long N, Khatib H (2012) Genome-wide identification and initial characterization of bovine long non-coding RNAs from EST data. Anim Genet 43:674–682

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Osak M, Bogu GK et al (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jian Z, Hana M, Yuxuan H et al (2013) Plant long ncRNAs: a new frontier for gene regulatory control. Am J Plant Sci 4:1038–1045

    Article  Google Scholar 

  • Jin J, Liu J, Wang H et al (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29:1068–1071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21

    Article  CAS  PubMed  Google Scholar 

  • Knowling S, Morris KV (2011) Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie 93:1922–1927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ et al (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed Central  PubMed  Google Scholar 

  • Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7:1216–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lei N, Wu HS, Hsu JM et al (2012) Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res 4:127–150

    Google Scholar 

  • Li L, Wang X, Stolc V et al (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38:124–129

    Article  CAS  PubMed  Google Scholar 

  • Li T, Wang S, Wu R, Zhou X, Zhu D et al (2012) Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing. Genomics 99:292–298

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Chiang SF, Chiou TJ (2008) Regulatory network of MicroRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33:867–874

    Article  CAS  PubMed  Google Scholar 

  • Lu ZJ, Yip KY, Wang G et al (2011) Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res 21:276–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo M, Taylor JM, Spriggs A (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7:e1002125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J, Yan B, Qu Y et al (2008) Zm401, a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. J Cell Biochem 105:136–146

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Hao Y, Dong X, Gong Q, Chen J et al (2012) Molecular mechanisms and function prediction of long noncoding RNA. ScientificWorldJournal 2012:541786. doi:10.1100/2012/541786

    PubMed Central  PubMed  Google Scholar 

  • Martin AC, del Pozo JC, Iglesias J et al (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Ishida J, Morosawa T et al (2010) Arabidopsis tiling array analysis to identify the stress-responsive genes. Methods Mol Biol 639:141–155

    CAS  PubMed  Google Scholar 

  • Meng Y, Shao C, Wang H et al (2013) The regulatory activities of plant microRNAs: a more dynamic perspective. Plant Physiol 157:1583–1595

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michelhaugh SKL, Lipovich J, Blythe H et al (2011) Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 116:459–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Mitchell JA, Sanz LA et al (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–1720

    Article  CAS  PubMed  Google Scholar 

  • Nam JW, Bartel DP (2012) Long noncoding RNAs in C. elegans. Genome Res 22:2529–2540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nie L, Wu HJ, Hsu J-M et al (2012) Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res 4:127–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orom UA, Dierren T, Guigo R et al (2010) Long non-coding RNAs as enhancers of gene expression. Cold Spring Harb Symp Quant Biol 75:325–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Article  CAS  PubMed  Google Scholar 

  • Pauli AE, Valen MF, Lin M et al (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rehrauer H, Aquino C, Gruissem W et al (2010) AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. Plant Physiol 152:487–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Rohrig H, Schmidt J, Miklashevichs E et al (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99:1915–1920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rymarquis LA, Kastenmayer JP, Huttenhofer AG et al (2008) Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci 13:329–334

    Article  CAS  PubMed  Google Scholar 

  • Sigova AA, Mullen AC, Molinie B et al (2013) Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci U S A 110:2876–2881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sousa C, Johansson C, Charon C et al (2001) Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol 21:354–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Swiezewski S, Liu F, Magusin A et al (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  • Verma SS, Megha S, Rahman MH, Kav NNV et al (2014) MicroRNA omics approaches to investigate biotic and abiotic stress responses. In: Benkeblia N (ed) Omics technologies and crop improvement. CRC, Boca Raton

    Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wasaki J, Yonetani R, Shinano T et al (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol 158:239–248

    Article  CAS  Google Scholar 

  • Washietl S, Findeiss S, Muller SA et al (2011) RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA 17:578–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wierzbicki AT (2012) The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol 15:517–522

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single nucleotide resolution. Nature 453:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood CC, Robertson M, Tanner G et al (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U S A 103:14631–14636

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu HJ, Wang ZM, Wang M et al (2013) Wide spread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang WC, Katinakis P, Hendriks P et al (1993) Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J 3:573–585

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Chen YQ (2013) Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun 436:111–114

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhao H, Xie S et al (2011) Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci U S A 108:20042–20047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H, Liu Q, Li J et al (2012) Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649–660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu QH, Wang MB (2012) Molecular functions of long non-coding RNAs in plants. Genes (Basel) 3:176–190

    Article  Google Scholar 

  • Zhu QH, Stephen S, Taylor J et al (2014) Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol 201:574–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Work in the corresponding author’s laboratory is partially supported by a grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nat N. V. Kav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Megha, S., Basu, U., Rahman, M.H., Kav, N.N.V. (2015). The Role of Long Non-coding RNAs in Abiotic Stress Tolerance in Plants. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_4

Download citation

Publish with us

Policies and ethics