Skip to main content

A Novel In Vitro Primary Culture Model of the Lower Motor Neuron–Neuromuscular Junction Circuit

  • Protocol
  • First Online:
Microfluidic and Compartmentalized Platforms for Neurobiological Research

Part of the book series: Neuromethods ((NM,volume 103))

Abstract

Modelling the complex process of neuromuscular signalling is key to understanding not only normal circuit function but also importantly the mechanisms underpinning a range of degenerative diseases. Here, we describe a compartmented in vitro model of the lower motor neuron–neuromuscular junction circuit, incorporating primary spinal motor neurons, supporting glia and skeletal muscle. This culture model is designed to spatially mimic the unique anatomical and cellular interactions of this circuit in compartmented microfluidic devices, such that the glial cells are located with motor neuron cell bodies in the cell body chamber and motor neuron axons extend to a distal chamber containing skeletal muscle cells whilst simultaneously allowing targeted intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naya FJ et al (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275:4545–4548

    Article  CAS  PubMed  Google Scholar 

  2. Kablar B, Belliveau AC (2005) Presence of neurotrophic factors in skeletal muscle correlates with survival of spinal cord motor neurons. Dev Dynam 234:659–669

    Article  CAS  Google Scholar 

  3. Dobrowolny G et al (2005) Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168:193–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wong M, Martin LJ (2010) Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet 19:2284–2302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dupuis L et al (2003) Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB J 17:2091–2093

    CAS  PubMed  Google Scholar 

  6. Wallace GQ, McNally EM (2009) Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol 71:37–57

    Article  CAS  PubMed  Google Scholar 

  7. Dutton E et al (1995) Acetylcholine receptor aggregation at nerve-muscle contacts in mammalian cultures: induction by ventral spinal cord neurons is specific to axons. J Neurosci 15:7401

    CAS  PubMed  Google Scholar 

  8. Guo X et al (2011) Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials 32:9602–9611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kobayashi T et al (1987) Human muscle cultured in monolayer and cocultured with fetal rat spinal cord: importance of dorsal root ganglia for achieving successful functional innervation. J Neurosci 7:3131–3141

    CAS  PubMed  Google Scholar 

  10. Mars T et al (2001) Differentiation of glial cells and motor neurons during the formation of neuromuscular junctions in cocultures of rat spinal cord explant and human muscle. J Comp Neurol 438:239–251

    Article  CAS  PubMed  Google Scholar 

  11. Taylor AM et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Southam KA et al (2013) Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. J Neurosci Meth 218:164–169

    Article  Google Scholar 

  13. Hosie KA et al (2012) Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model. ASN Neuro 4:47–57

    Article  CAS  Google Scholar 

  14. Park I-H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey C. Dickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Southam, K.A., King, A.E., Blizzard, C.A., McCormack, G.H., Dickson, T.C. (2015). A Novel In Vitro Primary Culture Model of the Lower Motor Neuron–Neuromuscular Junction Circuit. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics