Skip to main content

The Fabrication of Microfluidic Platforms with Pneumatically/Hydraulically Controlled PDMS Valves and Their Use in Neurobiological Research

  • Protocol
  • First Online:
Microfluidic and Compartmentalized Platforms for Neurobiological Research

Part of the book series: Neuromethods ((NM,volume 103))

  • 906 Accesses

Abstract

Microfluidic technology has made a significant impact in neurobiological research. The new capabilities offered by microfluidic devices allow researchers to investigate neurobiological phenomena in ways previously unachievable using traditional cell biology techniques. Here we detail the fabrication of a microfluidic cell coculture platform that uses pneumatically or hydraulically controlled valves to reversibly separate cell populations. Using this platform, communication between cell populations in different culture chambers can be enabled or restricted as desired. This allows for both growth of different cell types in each respective optimal culture media and separate treatment of individual cell populations with transfecting agents, growth factors, and drugs, etc. At a desired time-point, cell-cell interactions can be studied by deactivating the valve. The device has been used previously to transfect neurons with different fluorescent presynaptic and postsynaptic markers and then observe in real-time the subsequent process of synapse formation. Additionally, the platform has been an effective tool for investigating the role of glia–neuron communication on synaptic formation and stability. In this chapter, the design, fabrication, and operation of the valve-enabled microfluidic cell coculture platform are clearly described so as to enable the reader to replicate the device for use in future neurobiological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor AM, Jeon NL (2010) Micro-scale and microfluidic devices for neurobiology. Curr Opin Neurobiol 20:640–647

    Article  CAS  PubMed  Google Scholar 

  2. Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto Calif) 1:423–449

    Article  CAS  Google Scholar 

  3. Gross PG, Kartalov EP, Scherer A, Weiner LP (2007) Applications of microfluidics for neuronal studies. J Neurol Sci 252(2):135–143

    Article  PubMed  Google Scholar 

  4. Park JW, Kim HJ, Kang MW, Jeon NL (2013) Advances in microfluidics-based experimental methods for neuroscience research. Lab Chip 13(4):509–521

    Article  CAS  PubMed  Google Scholar 

  5. Biffi E, Piraino F, Pedrocchi A, Fiore GB, Ferrigno G, Redaelli A, Menegon A, Rasponi M (2012) A microfluidic platform for controlled biochemical stimulation of twin neuronal networks. Biomicrofluidics 6(2):24106–2410610

    Article  PubMed  Google Scholar 

  6. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406

    Article  CAS  PubMed  Google Scholar 

  7. Taylor A, Blurton-Jones M, Rhee S, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zhou J, Yan H, Ren K, Dai W, Wu H (2009) Convenient method for modifying poly(dimethylsiloxane) with poly(ethylene glycol) in microfluidics. Anal Chem 81(16):6627–6632

    Article  CAS  PubMed  Google Scholar 

  9. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

    Article  CAS  PubMed  Google Scholar 

  10. Mukhopadhyay R (2007) When PDMS isn’t the best. What are its weaknesses, and which other polymers can researchers add to their toolboxes? Anal Chem 79(9):3248–3253

    Article  CAS  PubMed  Google Scholar 

  11. Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486

    Article  CAS  PubMed  Google Scholar 

  12. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411

    Article  CAS  PubMed  Google Scholar 

  13. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Article  CAS  PubMed  Google Scholar 

  14. Zhang M, Wu J, Wang L, Xiao K, Wen W (2010) A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10(9):1199–1203

    Article  CAS  PubMed  Google Scholar 

  15. Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Article  CAS  PubMed  Google Scholar 

  16. Brantley-Sieders DM, Dunaway CM, Rao M, Short S, Hwang Y, Gao Y, Li D, Jiang A, Shyr Y, Wu JY, Chen J (2011) Angiocrine factors modulate tumor proliferation and motility through EphA2 repression of Slit2 tumor suppressor function in endothelium. Cancer Res 71(3):976–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gao Y, Majumdar D, Jovanovic B, Shaifer C, Lin PC, Zijlstra A, Webb DJ, Li D (2011) A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomed Microdevices 13(3):539–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Majumdar D, Gao Y, Li D, Webb DJ (2011) Co-culture of neurons and glia in a novel microfluidic platform. J Neurosci Methods 196(1):38–44

    Article  PubMed Central  PubMed  Google Scholar 

  19. Shi M, Majumdar D, Gao Y, Brewer B, Goodwin C, McLean JA, Li D, Webb DJ (2013) Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 13(15):3008–3021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lynn NS, Dandy DS (2009) Passive microfluidic pumping using coupled capillary/evaporation effects. Lab Chip 9(23):3422–3429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Walker GM, Beebe DJ (2002) An evaporation-based microfluidic sample concentration method. Lab Chip 2(2):57–61

    Article  CAS  PubMed  Google Scholar 

  22. Bodas D, Khan-Malek C (2007) Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—an SEM investigation. Sensors Actuator B Chem 123(1):368–373

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brewer, B.M., Webb, D.J., Li, D. (2015). The Fabrication of Microfluidic Platforms with Pneumatically/Hydraulically Controlled PDMS Valves and Their Use in Neurobiological Research. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics