Skip to main content

Multi-objective Optimization for Improved Agricultural Water and Nitrogen Management in Selected Regions of Africa

  • Chapter
Handbook of Operations Research in Agriculture and the Agri-Food Industry

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 224))

  • 2167 Accesses

Abstract

African agriculture is one of the less productive owing to an inefficient use of available fertilizer and water resources using one-tenth of the world average. The largest increase in agricultural output will most likely come from the intensification of the production of existing agricultural land. This will require widespread adoption of sustainable land management practices and a more efficient use of irrigation and fertilization (http://www.fao.org/docrep/013/i2050e/i2050e.pdf). The largest increase in agricultural output will most likely come from the intensification of the production of existing agricultural land.

Reaching an efficient management of natural resources often leads to a difficult and challenging multi-objective optimization problem, in which finding the trade-off strategy solutions is necessary, each solution being no better or worse than the other. Multi-objective optimization methods provide a systematic approach to search and compare trade-offs and to select alternatives that best satisfy the decision-maker’s criteria.

In this context, we integrate a biophysical model with a multi-objective evolutionary algorithm (MOEA). The biophysical model adopted is EPIC, a model that allows to predict the effects of candidate modified agricultural management practices of different land use and land management scenarios. The integrated GIS-EPIC multi-objective analysis tool has been applied to identify optimum crop and land management patterns in different African countries, demonstrating the ability to provide trade-off Pareto solutions which simultaneously minimize total nitrate pollution through runoff and leaching, at the same time maximizing the exploitation benefits by choosing the adequate crop, fertilization, and irrigation management sequences. Knowledge of these sets helps the decision-makers to choose optimum alternative patterns of agricultural management specifically adapted to African countries characterized by multiple soil types and different climate and crops.

The results prove how this optimization method is powerful and operational, an essential tool for taking management decisions. This methodology would be a valuable tool for policy makers and water managers, providing information about cost-effectiveness of different agricultural practices in African countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ananda J, Herath G (2003) Incorporating stakeholder values into regional forest planning: a value function approach. Ecol Econ 45:75–90. doi:10.1016/S0921-8009(03)00004-1

    Article  Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S, Arnell N, Burkett V et al (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

    Google Scholar 

  • Coverstone-Carroll V, Hartmann JW, Mason WJ (2000) Optimal multi-objective low-thrust spacecraft trajectories. Comput Methods Appl Mech Eng 186:387–402. doi:10.1016/S0045-7825(99)00393-X

    Article  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  • Easterling W, Apps M (2005) Assessing the consequences of climate change for food and forest resources: a view from the IPCC. Clim Change 70:165–189. doi:10.1007/s10584-005-5941-0

    Article  Google Scholar 

  • FAO (2009) The special challenge for sub-Saharan Africa “How to feed the world 2050”, Rome. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Africa.pdf. Accessed Jan 2013

  • FAO (2011) The state of food and agriculture—women in agriculture, closing the gender gap for development. Office of Knowledge Exchange, Research and Extension, Rome. http://www.fao.org/docrep/013/i2050e/i2050e.pdf. Accessed Jan 2013

  • Galbiati L, Elorza FJ, Udías A, Bouraoui F (2007) Multiobjective optimization for river basin management plan. In: Candela L, Vadillo I, Aagaard P et al (eds) Water pollution in natural porous media at different scales. Assessment of fate, impact and indicators “WAPO2”. Instituto Geológico y Minero de España, Madrid, pp 627–631

    Google Scholar 

  • Gassman PW, Williams JR, Benson VW, et al (2005) Historical development and applications of the EPIC and APEX models. Working paper 05-WP 397, Center for Agricultural and Rural Development, Iowa State University, Ames. http://www.card.iastate.edu/publications/synopsis.aspx?id=763. Accessed 1 Nov 2006

  • Giles J (2005) Nitrogen study fertilizes fears of pollution. Nature 433:791. doi:10.1038/433791a

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    Google Scholar 

  • Hogan R, Stiles S, Tacker P, Vories E, Bryant KJ (2007) Estimating irrigation costs. Little Rock: University of Arkansas Cooperative Extension Service, Fact Sheet No. FSA28

    Google Scholar 

  • IPCC (2007) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson SL, Adams RM, Perry GM (1991) The on-farm costs of reducing groundwater pollution. Am J Agric Econ 73:1063–1073. doi:10.2307/1242434

    Article  Google Scholar 

  • Latinopoulos D (2009) Multicriteria decision-making for efficient water and land resources allocation in irrigated agriculture. Environ Dev Sustain 11:329–343. doi:10.1007/s10668-007-9115-2

    Article  Google Scholar 

  • Lee JJ, Phillips DL, Benson VW (1999) Soil erosion and climate change: assessing potential impacts and adaptation practices. J Soil Water Conserv 54:529–536

    Google Scholar 

  • Liu J, Fritz S, van Wesenbeeck CFA, Fuchs M et al (2008) A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Global Planet Chang 64:222–235. doi:10.1016/j.gloplacha.2008.09.007

    Article  Google Scholar 

  • Liu J, Zehnder AJB, Yang H (2009) Global consumptive water use for crop production: the importance of green water and virtual water. Water Resour Res 45, W05428. doi:10.1029/2007WR006051

    Google Scholar 

  • Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26:369–395. doi:10.1007/s00158-003-0368-6

    Article  Google Scholar 

  • Mearns LO, Mavromatis T, Tsvetsinskaya E et al (1999) Comparative responses of EPIC and CERES crop models to high and low spatial resolution climate change scenarios. J Geophys Res 104:6623–6646

    Article  Google Scholar 

  • Meyer B, Lescot J-M, Laplana R (2009) Comparison of two spatial optimization techniques: a framework to solve multiobjective land use distribution problems. Environ Manage 43:264–281. doi:10.1007/s00267-008-9225-0

    Article  Google Scholar 

  • Mills D, Vlacic L, Lowe I (1996) Improving electricity planning—use of a multicriteria decision making model. Int Trans Oper Res 3:293–304. doi:10.1016/S0969-6016(96)00023-8

    Google Scholar 

  • Morris M, Binswanger-Mkhize HP, Byerlee D (2009) Awakening Africa’s sleeping giant: prospects for commercial agriculture in the Guinea Savannah zone and beyond. The World Bank, Washington, DC

    Book  Google Scholar 

  • Nalle DJ, Montgomery CA, Arthur JL et al (2004) Modeling joint production of wildlife and timber. J Environ Econ Manag 48:997–1017. doi:10.1016/j.jeem.2004.01.001

    Article  Google Scholar 

  • Pastori M, Bouraoui F, Aloe A, Bidoglio G (2011) GISEPIC AFRICA: a modeling tool for assessing impacts of nutrient and water use in African agriculture—JRC63230. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Poloni C, Giurgevich A, Onesti L, Pediroda V (2000) Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics. Comput Methods Appl Mech Eng 186:403–420. doi:10.1016/S0045-7825(99)00394-1

    Article  Google Scholar 

  • Prato T (1999) Multiple attribute decision analysis for ecosystem management. Ecol Econ 30:207–222. doi:10.1016/S0921-8009(99)00002-6

    Article  Google Scholar 

  • RAC Resource Assessment Commission (1992) Multi-criteria analysis as a resource assessment tool (RAC Research Paper No. 6). Australian Government Publishing Service, Canberra

    Google Scholar 

  • Rinaldi M (2001) Application of EPIC model for irrigation scheduling of sunflower in southern Italy. Agric Water Manag 49:185–196. doi:10.1016/S0378-3774(00)00148-7

    Article  Google Scholar 

  • Sadeghi SHR, Jalili K, Nikkami D (2009) Land use optimization in watershed scale. Land Use Policy 26:186–193. doi:10.1016/j.landusepol.2008.02.007

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233

    Article  Google Scholar 

  • Teague ML, Bernardo DJ, Mapp HP (1995) Farm-level economic analysis incorporating stochastic environmental risk assessment. Am J Agric Econ 77:8–19. doi:10.2307/1243884

    Article  Google Scholar 

  • Udías A, Galbiati L, Bouraoui F, Elorza FJ (2007) Mejora de la sostenibilidad de la actividad agrícola mediante un algoritmo evolutivo multiobjetivo, V Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB’07

    Google Scholar 

  • Udías A, Galbiati L, Elorza FJ, Efremov R, Gómez A, Chiang G, Arrosa M, Lejarraga T (2009) Algoritmos genéticos para la selección de medidas de restauración de cuencas. MAEB—VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados:139–146

    Google Scholar 

  • Udías A, Galbiati L, Elorza FJ, Efremov R, Pons J, Borras G (2011) Framework for multi-criteria decision management in watershed restoration. J Hydroinf 14(2):395–411. doi:10.2166/hydro.2011.107

    Article  Google Scholar 

  • Velde MVD, Bouraoui F, Aloe A (2009) Pan-European regional-scale modelling of water and N efficiencies of rapeseed cultivation for biodiesel production. Glob Chang Biol 15:24–37. doi:10.1111/j.1365-2486.2008.01706.x

    Article  Google Scholar 

  • Weintraub A, Romero C (2006) Operations research models and the management of agricultural and forestry resources: a review and comparison. Interfaces 36:446–457. doi:10.1287/inte.1060.0222

    Article  Google Scholar 

  • Whittaker G, Confesor R Jr, Griffith SM et al (2009) A hybrid genetic algorithm for multiobjective problems with activity analysis-based local search. Eur J Oper Res 193:195–203. doi:10.1016/j.ejor.2007.10.050

    Article  Google Scholar 

  • Williams JR, Jones CA, Dyke PT (1984) The EPIC model and its applications. In: Proceedings of International Symposium for Agrotechnology Transfer, ICRISAT, Patancheru

    Google Scholar 

  • Wriedt G, Van der Velde M, Aloe A, Bouraoui F (2009) Estimating irrigation water requirements in Europe. J Hydrol 373:527–544. doi:10.1016/j.jhydrol.2009.05.018

    Article  Google Scholar 

  • Zavattaro L, Monaco S, Sacco D, Grignani C (2012) Options to reduce N loss from maize in intensive cropping systems in Northern Italy. Agr Ecosyst Environ 147:24–35. doi:10.1016/j.agee.2011.05.020

    Article  Google Scholar 

  • Zekri S, Casimiro Herruzo A (1994) Complementary instruments to EEC nitrogen policy in non-sensitive areas: a case study in Southern Spain. Agr Syst 46:245–255. doi:10.1016/0308-521X(94)90001-V

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the projects MTM2009-14039-C06-03 and MTM2012-36163-C06-06 from the Spanish Government, RIESGOS-CM from Comunidad de Madrid (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Udías .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

Pastori, M., Udías, A., Bouraoui, F., Aloe, A., Bidoglio, G. (2015). Multi-objective Optimization for Improved Agricultural Water and Nitrogen Management in Selected Regions of Africa. In: Plà-Aragonés, L. (eds) Handbook of Operations Research in Agriculture and the Agri-Food Industry. International Series in Operations Research & Management Science, vol 224. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2483-7_11

Download citation

Publish with us

Policies and ethics