Skip to main content

Longitudinal Studies 3: Data Modeling Using Standard Regression Models and Extensions

  • Protocol
  • First Online:
Clinical Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1281))

Abstract

In longitudinal studies the relationship between exposure and disease can be measured once or multiple times while participants are monitored over time. Traditional regression techniques are used to model outcome data when each epidemiological unit is observed once. These models include generalized linear models for quantitative continuous, discrete, or qualitative outcome responses, and models for time-to-event data. When data come from the same subjects or group of subjects, observations are not independent and the underlying correlation needs to be addressed in the analysis. In these circumstances extended models are necessary to handle complexities related to clustered data, and repeated measurements of time-varying predictors and/or outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  2. Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, Bersin RM, Van Moore A, Simonton CA 3rd, Rittase RA, Norton HJ, Kennedy TP (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291:2328–2334

    Article  CAS  PubMed  Google Scholar 

  3. Ravani P, Tripepi G, Malberti F, Testa S, Mallamaci F, Zoccali C (2005) Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol 16:2449–2455

    Article  CAS  PubMed  Google Scholar 

  4. Heckbert SR, Post W, Pearson GD, Arnett DK, Gomes AS, Jerosch-Herold M, Hundley WG, Lima JA, Bluemke DA (2006) Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J Am Coll Cardiol 48:2285–2292

    Article  PubMed Central  PubMed  Google Scholar 

  5. Heine GH, Reichart B, Ulrich C, Kohler H, Girndt M (2007) Do ultrasound renal resistance indices reflect systemic rather than renal vascular damage in chronic kidney disease? Nephrol Dial Transplant 22:163–170

    Article  PubMed  Google Scholar 

  6. Glantz SA, Slinker BK (2001) A primer of applied regression and analysis of variance, 2nd edn. Mc Graw Hill, New York

    Google Scholar 

  7. Hosmer DW, Lemeshow LS (2000) Introduction to logistic regression model. In: Applied Logistic Regression, 2nd edn. Wiley, New York, pp 1–30

    Chapter  Google Scholar 

  8. Hosmer DW, Lemeshow LS (2000) Sample size issues when fitting logistic regression. In: Applied Logistic Regression, 2nd edn. Wiley, New York, pp 339–351

    Chapter  Google Scholar 

  9. Hosmer DW, Lemeshow LS (2000) Applied Logistic Regression, 2nd edn. Wiley, New York

    Book  Google Scholar 

  10. Dupont WD (2002) Introduction to Poisson regression: inferences on morbidity and mortality rates. In: a simple introduction to the analysis of complex data. Cambridge University Press, p 269–294

    Google Scholar 

  11. Kleinbaum DG, Kupper LL, Muller KE, Nizam A (1997) Poisson regression analysis. In: applied regression analysis and multivariable methods. Duxbury Press, p 687–710

    Google Scholar 

  12. Hosmer DW, Lemeshow LS (1999) Applied survival analysis, regression modelling of time to event data. Wiley, New York

    Google Scholar 

  13. Kleinbaum DG (2005) Survival Analysis, a Self-Learning Text. Springer, New York

    Google Scholar 

  14. Cox DR (1972) Regression Models and Life-Tables. J Roy Stat Soc B 34:187–220

    Google Scholar 

  15. Bland M, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 307–310

    Google Scholar 

  16. Lin DY, Wei LJ (1989) The robust inference for the Cox proportional hazards model. J Am Stat Assoc 84:1074–1078

    Article  Google Scholar 

  17. White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–25

    Article  Google Scholar 

  18. Zeger SL, Liang K-Y (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130

    Article  CAS  PubMed  Google Scholar 

  19. Therneau TM, Grambisch PM (2000) Multiple events per subject and frailty models. In: modeling survival data: extending the Cox model. Springer-Verlag, New York, p 159–260

    Google Scholar 

  20. Lee EW, Wei LJ, Amato D (1992) Cox-type regression analysis for large number of small groups of correlated failure time observations. In: survival analysis, state of the art. Netherlands, Kluwer Academic Publishers, p 237–247

    Google Scholar 

  21. Lunn M, McNeil D (1995) Applying Cox regression to competing risks. Biometrics 51:524–532

    Article  CAS  PubMed  Google Scholar 

  22. Wei LJ, Lin DY, Weissfeld L (1989) Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Stat Assoc 84:1065–1073

    Article  Google Scholar 

  23. Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Anna Statist 10:1100–1120

    Article  Google Scholar 

  24. Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68:373–379

    Article  Google Scholar 

  25. Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW, Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP, Toto R, Hemodialysis (HEMO) Study Group (2002) Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 347:2010–9

    Article  PubMed  Google Scholar 

  26. Ravani P, Tripepi G, Pecchini P, Mallamaci F, Malberti F, Zoccali C (2008) Urotensin II is an inverse predictor of death and fatal cardiovascular events in chronic kidney disease. Kidney Int 73:95–101

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Wolfe RA (2002) A frailty model for informative censoring. Biometrics 58:510–520

    Article  PubMed  Google Scholar 

  28. Box-Steffensmeier JM, De Boef S (2006) Repeated events survival models: the conditional frailty model. Stat Med 25:3518–3533

    Article  PubMed  Google Scholar 

  29. Liu L, Wolfe RA, Huang X (2004) Shared frailty models for recurrent events and a terminal event. Biometrics 60:747–756

    Article  PubMed  Google Scholar 

  30. Mahe C, Chevret S (2001) Analysis of recurrent failure times data: should the baseline hazard be stratified? Stat Med 20:3807–3815

    Article  CAS  PubMed  Google Scholar 

  31. Hougaard P (1995) Frailty models for survival data. Lifetime Data Anal 1:255–273

    Article  CAS  PubMed  Google Scholar 

  32. Pickles A, Crouchley R (1995) A comparison of frailty models for multivariate survival data. Stat Med 14:1447–1461

    Article  CAS  PubMed  Google Scholar 

  33. Pintilie M (2006) Competing risks. Wiley, New York

    Book  Google Scholar 

  34. Fine JP, Gray RJ (1999) A proportional hazards model for the sub distribution of a competing risk. J Am Stat Assoc 94:496–509

    Article  Google Scholar 

  35. Dittrich E, Puttinger H, Schillinger M, Lang I, Stefenelli T, Horl WH, Vychytil A (2006) Effect of radio contrast media on residual renal function in peritoneal dialysis patients—a prospective study. Nephrol Dial Transplant 21:1334–1339

    Article  PubMed  Google Scholar 

  36. van Vilsteren MC, de Greef MH, Huisman RM (2005) The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in The Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant 20:141–146

    Article  PubMed  Google Scholar 

  37. Weijnen TJ, van Hamersvelt HW, Just PM, Struijk DG, Tjandra YI, ter Wee PM, de Charro FT (2003) Economic impact of extended time on peritoneal dialysis as a result of using polyglucose: the application of a Markov chain model to forecast changes in the development of the ESRD programme over time. Nephrol Dial Transplant 18:390–396

    Article  CAS  PubMed  Google Scholar 

  38. Espinosa M, Martn-Malo A, Ojeda R, Santamara R, Soriano S, Aguera M, Aljama P (2004) Marked reduction in the prevalence of hepatitis C virus infection in hemodialysis patients: causes and consequences. Am J Kidney Dis 43:685–689

    Article  PubMed  Google Scholar 

  39. Ravani P, Parfrey P, Murphy S, Gadag V, Barrett B (2008) Clinical Research of Kidney Disease IV: standard regression models. Nephrol Dial Transplant 23:475–482

    Article  PubMed  Google Scholar 

  40. Ravani P, Parfrey P, Gadag V, Malberti F, Barrett B (2008) Clinical Research of Kidney Disease V: extended analytical models. Nephrol Dial Transplant 23:1484–1492

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Ravani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ravani, P., Barrett, B.J., Parfrey, P.S. (2015). Longitudinal Studies 3: Data Modeling Using Standard Regression Models and Extensions. In: Parfrey, P., Barrett, B. (eds) Clinical Epidemiology. Methods in Molecular Biology, vol 1281. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2428-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2428-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2427-1

  • Online ISBN: 978-1-4939-2428-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics