Skip to main content

Exome and Whole Genome Sequencing in Aging and Longevity

  • Chapter
  • First Online:
Longevity Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 847))

Abstract

Calendar age is the major risk factor for common disease. It is therefore expected that understanding the aging process will eventually lead to promotion of better health conditions in elderly populations. Such insight may be obtained by identifying the genetic determinants of familial and exceptional longevity and age-related disease. Research of these determinants has been performed in candidate gene, genome-wide association and linkage studies. Because exploration of the common variation in the genome did not explain much of the variation in the rate of aging and longevity, researchers in the field have only recently started to investigate the contribution of rare genetic variants to these traits. The increased throughput and decreased costs of next generation sequencing (NGS) have resulted in a great deal of novel applications for sequencing sets of candidate genes, whole exomes, and whole genomes of individuals. Most of the successful NGS applications are as yet those focused on genetic syndromes and cancers for which causal mutations are readily being identified. In this chapter, we discuss the genetic and phenomic aspects of human aging research and the use of NGS data to identify genes relevant for age-related diseases and lifespan regulation, and to investigate the accumulation of somatic genetic variation during the course of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NGS:

next generation sequencing

GWAS:

genome-wide association studies

LOAD:

late-onset Alzheimer’s disease

FOA:

familial generalised osteoarthritis

SKAT:

sequence kernel association test

BBMRI-NL:

Biobanking and Biomolecular Resources Research Infrastructure of the Netherlands

References

  1. Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031 (PubMed PMID: 12004104)

    Article  CAS  PubMed  Google Scholar 

  2. Hitt R, Young-Xu Y, Silver M, Perls T (1999) Centenarians: the older you get, the healthier you have been. Lancet 354(9179):652 (PubMed PMID: 10466675)

    Article  CAS  PubMed  Google Scholar 

  3. Kirkwood TB, Austad SN (2000) Why do we age? Nature 408(6809):233–238 (PubMed PMID: 11089980)

    Article  CAS  PubMed  Google Scholar 

  4. Kirkwood TB (1977) Evolution of ageing. Nature 270(5635):301–304 (PubMed PMID: 593350)

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217 (PubMed PMID: 23746838. Pubmed Central PMCID: 3836174)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jones OR, Scheuerlein A, Salguero-Gomez R, Camarda CG, Schaible R, Casper BB et al (2014) Diversity of ageing across the tree of life. Nature 505(7482):169–173 (PubMed PMID: 24317695)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Navarro CL, Cau P, Levy N (2006) Molecular bases of progeroid syndromes. Hum Mol Genet 15(Spec No 2):R151–161 (PubMed PMID: 16987878)

    Article  CAS  PubMed  Google Scholar 

  8. Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H et al (2002) Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci U S A 99(12):8442–8447 (PubMed PMID: 12060785. Pubmed Central PMCID: 123086)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Terry DF, Wilcox MA, McCormick MA, Pennington JY, Schoenhofen EA, Andersen SL et al (2004) Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. J Am Geriatr Soc 52(12):2074–2076 (PubMed PMID: 15571545)

    Article  PubMed  Google Scholar 

  10. Westendorp RG, van Heemst D, Rozing MP, Frolich M, Mooijaart SP, Blauw GJ et al (2009) Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: the leiden longevity study. J Am Geriatr Soc 57(9):1634–1637 (PubMed PMID: 19682117)

    Article  PubMed  Google Scholar 

  11. Schoenmaker M, de Craen AJ, de Meijer PH, Beekman M, Blauw GJ, Slagboom PE et al (2006) Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden longevity study. Eur J Hum Genet 14(1):79–84 (PubMed PMID: 16251894)

    PubMed  Google Scholar 

  12. Skytthe A, Pedersen NL, Kaprio J, Stazi MA, Hjelmborg JV, Iachine I et al (2003) Longevity studies in GenomEUtwin. Twin Res 6(5):448–454 (PubMed PMID: 14624729)

    Article  PubMed  Google Scholar 

  13. Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97(3):319–323 (PubMed PMID: 8786073)

    Article  CAS  PubMed  Google Scholar 

  14. Skytthe A, Valensin S, Jeune B, Cevenini E, Balard F, Beekman M et al (2011) Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project. Exp Gerontol 46(11):934–945 (PubMed PMID: 21871552. Pubmed Central PMCID: 3622890)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174 (PubMed PMID: 16461860)

    Article  PubMed  Google Scholar 

  16. Fischer M, Broeckel U, Holmer S, Baessler A, Hengstenberg C, Mayer B et al (2005) Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation 111(7):855–862 (PubMed PMID: 15710764)

    Article  PubMed  Google Scholar 

  17. Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R et al (2011) Health and function of participants in the long life family study: a comparison with other cohorts. Aging 3(1):63–76 (PubMed PMID: 21258136. Pubmed Central PMCID: 3047140)

    PubMed Central  PubMed  Google Scholar 

  18. Lai JY, Atzmon G, Melamed ML, Hostetter TH, Crandall JP, Barzilai N et al (2012) Family history of exceptional longevity is associated with lower serum uric acid levels in Ashkenazi Jews. J Am Geriatr Soc 60(4):745–750 (PubMed PMID: 22429185. Pubmed Central PMCID: 3325371)

    Article  PubMed Central  PubMed  Google Scholar 

  19. De Rango F, Dato S, Bellizzi D, Rose G, Marzi E, Cavallone L et al (2008) A novel sampling design to explore gene-longevity associations: the ECHA study. Eur J Hum Genet 16(2):236–242 (PubMed PMID: 17989723)

    Article  PubMed  Google Scholar 

  20. Perls TT, Bochen K, Freeman M, Alpert L, Silver MH (1999) Validity of reported age and centenarian prevalence in New England. Age Ageing 28(2):193–197 (PubMed PMID: 10350418)

    Article  CAS  PubMed  Google Scholar 

  21. Styrkarsdottir U, Thorleifsson G, Helgadottir HT, Bomer N, Metrustry S, Bierma-Zeinstra S et al (2014) Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat Genet 46(5):498–502 (PubMed PMID: 24728293)

    Article  CAS  PubMed  Google Scholar 

  22. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341 (PubMed PMID: 17463249. Pubmed Central PMCID: 3772310)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105(37):13987–13992 (PubMed PMID: 18765803. Pubmed Central PMCID: 2544566)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106(8):2700–2705 (PubMed PMID: 19196970. Pubmed Central PMCID: 2650329)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J et al (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8(4):460–472 (PubMed PMID: 19489743. Pubmed Central PMCID: 3652804)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Soerensen M, Dato S, Christensen K, McGue M, Stevnsner T, Bohr VA et al (2010) Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data. Aging Cell 9(6):1010–1017 (PubMed PMID: 20849522. Pubmed Central PMCID: 2992870)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Schachter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, Lesueur-Ginot L et al (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6(1):29–32 (PubMed PMID: 8136829)

    Article  CAS  PubMed  Google Scholar 

  28. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436–448 (PubMed PMID: 16708071. Pubmed Central PMCID: 2726954)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M, Christiansen L et al (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10(4):686–898 (PubMed PMID: 21418511. Pubmed Central PMCID: 3193372)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nebel A, Kleindorp R, Caliebe A, Nothnagel M, Blanche H, Junge O et al (2011) A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech Ageing Dev 132(6–7):324–330 (PubMed PMID: 21740922)

    Article  CAS  PubMed  Google Scholar 

  31. Sebastiani P, Solovieff N, Dewan AT, Walsh KM, Puca A, Hartley SW et al (2012) Genetic signatures of exceptional longevity in humans. PloS One 7(1):e29848 (PubMed PMID: 22279548. Pubmed Central PMCID: 3261167)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Deelen J, Beekman M, Uh HW, Broer L, Ayers KL, Tan Q et al (2014) Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum Mol Genet 23(16):4420–4432 (PubMed PMID: 24688116)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Walter S, Atzmon G, Demerath EW, Garcia ME, Kaplan RC, Kumari M et al (2011) A genome-wide association study of aging. Neurobiol Aging 32(11):2109 e15–28 (PubMed PMID: 21782286. Pubmed Central PMCID: 3193030)

    Article  Google Scholar 

  34. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458 (PubMed PMID: 24162737. Pubmed Central PMCID: 3896259)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195 (PubMed PMID: 22955828. Pubmed Central PMCID: 3771521)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Beekman M, Nederstigt C, Suchiman HE, Kremer D, van der Breggen R, Lakenberg N et al (2010) Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci U S A 107(42):18046–18049 (PubMed PMID: 20921414. Pubmed Central PMCID: 2964208)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M et al (2001) A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci U S A 98(18):10505–10508 (PubMed PMID: 11526246. Pubmed Central PMCID: 56990)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Boyden SE, Kunkel LM (2010) High-density genomewide linkage analysis of exceptional human longevity identifies multiple novel loci. PloS One 5(8):e12432 (PubMed PMID: 20824210. Pubmed Central PMCID: 29308490

    Article  PubMed Central  PubMed  Google Scholar 

  39. Edwards DR, Gilbert JR, Jiang L, Gallins PJ, Caywood L, Creason M et al (2011) Successful aging shows linkage to chromosomes 6, 7, and 14 in the Amish. Ann Hum Genet 75(4):516–528 (PubMed PMID: 21668908. Pubmed Central PMCID: 3756593)

    Article  PubMed Central  PubMed  Google Scholar 

  40. Beekman M, Blanche H, Perola M, Hervonen A, Bezrukov V, Sikora E et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell 12(2):184–193 (PubMed PMID: 23286790. Pubmed Central PMCID: 3725963)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876 (PubMed PMID: 18421352)

    Article  CAS  PubMed  Google Scholar 

  42. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814 (PubMed PMID: 12824425. Pubmed Central PMCID: 168916)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249 (PubMed PMID: 20354512. Pubmed Central PMCID: 2855889)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 6(12):e1001025 (PubMed PMID: 21152010. Pubmed Central PMCID: 2996323)

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315 (PubMed PMID: 24487276. Pubmed Central PMCID: 3992975)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456(7218):18–21 (PubMed PMID: 18987709)

    Article  CAS  PubMed  Google Scholar 

  47. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K et al (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335(6070):823–828 (PubMed PMID: 22344438. Pubmed Central PMCID: 3299548)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292(5514):104–106 (PubMed PMID: 11292874)

    Article  CAS  PubMed  Google Scholar 

  49. Sebastiani P, Riva A, Montano M, Pham P, Torkamani A, Scherba E et al (2011) Whole genome sequences of a male and female supercentenarian, ages greater than 114 years. Front Genet 2:90 (PubMed PMID: 22303384. Pubmed Central PMCID: 3262222)

    PubMed Central  PubMed  Google Scholar 

  50. Ye K, Beekman M, Lameijer EW, Zhang Y, Moed MH, van den Akker EB et al (2013) Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs. Twin Res Hum Genet 16(6):1026–1032 (PubMed PMID: 24182360)

    Article  PubMed  Google Scholar 

  51. Han J, Ryu S, Moskowitz DM, Rothenberg D, Leahy DJ, Atzmon G et al (2013) Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. Mech Ageing Dev 134(10):478–485 (PubMed PMID: 23376243. Pubmed Central PMCID: 3787996)

    Article  CAS  PubMed  Google Scholar 

  52. Ramos YF, Bos SD, van der Breggen R, Kloppenburg M, Ye K, Lameijer EW et al (2014) A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-205149 (PubMed PMID: 24743232)

    Google Scholar 

  53. Guerreiro R, Bilgic B, Guven G, Bras J, Rohrer J, Lohmann E et al (2013) Novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiol Aging 34(12):2890 e1–5 (PubMed PMID: 23870839. Pubmed Central PMCID: 3898264)

    Article  Google Scholar 

  54. Lee S, Moore EW, Marohn JA (2012) A unified picture of cantilever frequency-shift measurements of magnetic resonance. Phys Rev B, Condens Matter Mater Phys 85(16):165447–165453 (PubMed PMID: 24523575. Pubmed Central PMCID: 3918878)

    Article  Google Scholar 

  55. MacCluer JW, Stern MP, Almasy L, Atwood LA, Blangero J, Comuzzie AG et al (1999) Genetics of atherosclerosis risk factors in Mexican Americans. Nutr Rev 57(5 Pt 2):S59–65 (PubMed PMID: 10391028)

    CAS  PubMed  Google Scholar 

  56. Tanaka D, Nagashima K, Sasaki M, Funakoshi S, Kondo Y, Yasuda K et al (2013) Exome sequencing identifies a new candidate mutation for susceptibility to diabetes in a family with highly aggregated type 2 diabetes. Mol Genet Metab 109(1):112–117 (PubMed PMID: 23499280)

    Article  CAS  PubMed  Google Scholar 

  57. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488(7409):96–99 (PubMed PMID: 22801501)

    Article  CAS  PubMed  Google Scholar 

  58. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet 23(21):5838–5846 (PubMed PMID: 24899047)

    Article  PubMed  Google Scholar 

  59. Nho K, Corneveaux JJ, Kim S, Lin H, Risacher SL, Shen L et al (2013) Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment. Mol Psychiatry 18(7):781–787 (PubMed PMID: 23608917. Pubmed Central PMCID: 3777294)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC, Abdellaoui A et al (2014) The genome of the Netherlands: design, and project goals. Eur J Hum Genet 22(2):221–227 (PubMed PMID: 23714750. Pubmed Central PMCID: 3895638)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. The Genome of the Netherlands C (2014) Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet 46(8):818–825 (PubMed PMID: 24974849)

    Article  Google Scholar 

  62. Curtis HJ (1963) Biological mechanisms underlying the aging process. Science 141(3582):686–694 (PubMed PMID: 14024359)

    Article  CAS  PubMed  Google Scholar 

  63. Orgel LE (1973) Ageing of clones of mammalian cells. Nature 243(5408):441–445 (PubMed PMID: 4591306)

    Article  CAS  PubMed  Google Scholar 

  64. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464(7293):1351–1356 (PubMed PMID: 20428171. Pubmed Central PMCID: 2862593)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Holstege H, Pfeiffer W, Sie D, Hulsman M, Nicholas TJ, Lee CC et al (2014) Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res 24(5):733–742 (PubMed PMID: 24760347. Pubmed Central PMCID: 4009603)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Eline Slagboom PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

van den Akker, E., Deelen, J., Slagboom, P., Beekman, M. (2015). Exome and Whole Genome Sequencing in Aging and Longevity. In: Atzmon, PhD, G. (eds) Longevity Genes. Advances in Experimental Medicine and Biology, vol 847. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2404-2_6

Download citation

Publish with us

Policies and ethics