Skip to main content

Using Solutes and Kinetics to Probe Large Conformational Changes in the Steps of Transcription Initiation

  • Protocol
  • First Online:
Bacterial Transcriptional Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1276))

Abstract

Small solutes are useful probes of large conformational changes in RNA polymerase–promoter interactions and other biopolymer processes. In general, a large effect of a solute on an equilibrium constant (or rate constant) indicates a large change in water-accessible biopolymer surface area in the corresponding step (or transition state), resulting from conformational changes, interface formation, or both. Here, we describe nitrocellulose filter binding assays from series used to determine the urea dependence of open complex formation and dissociation with Escherichia coli RNA polymerase and phage λPR promoter DNA. Then, we describe the subsequent data analysis and interpretation of these solute effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guinn EJ, Pegram LM, Capp MW et al (2011) Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc Natl Acad Sci U S A 108:16932–16937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Diehl RC, Guinn EJ, Capp MW et al (2013) Quantifying additive interactions of the osmolyte proline with individual functional groups of proteins: comparisons with urea and glycine betaine, interpretation of m-values. Biochemistry 52:5997–6010

    Article  CAS  PubMed  Google Scholar 

  3. Kontur WS, Saecker RM, Davis CA et al (2006) Solute probes of conformational changes in open complex (RPo) formation by Escherichia coli RNA polymerase at the lPR promoter: evidence for unmasking of the active site in the isomerization step and for large-scale coupled folding in the subsequent conversion to RPo. Biochemistry 45:2161–2177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kontur WS, Capp MW, Gries TJ et al (2010) Probing DNA binding, DNA opening, and assembly of a downstream clamp/jaw in Escherichia coli RNA polymerase-lPR promoter complexes using salt and the physiological anion glutamate. Biochemistry 49:4361–4373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kontur WS, Saecker RM, Capp MW et al (2008) Late steps in the formation of the E. coli RNA polymerase-lPR promoter open complexes: characterization of conformational changes by rapid [perturbant] upshift experiments. J Mol Biol 376:1034–1047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Drennan AC, Kraemer MR, Capp MW et al (2012) Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation. Biochemistry 51:9447–9459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tang G-Q, Patel SS (2006) Rapid binding of T7 RNA polymerase is followed by simultaneous bending and opening of the promoter DNA. Biochemistry 45:4947–4956

    Article  CAS  PubMed  Google Scholar 

  8. Saecker RM, Record MT Jr, deHaseth PL (2011) Mechanism of bacterial transcription initiation: RNA polymerase-promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 412:754–771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gries TJ, Kontur WS, Capp MW et al (2010) One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc Natl Acad Sci U S A 107:10418–10423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Davis CA, Bingman CA, Landick R, Record MT Jr, Saecker RM (2007) Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 104:7833–7838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Saecker RM, Tsodikov OV, McQuade KL et al (2002) Kinetic studies and structural models of the association of E. coli s70 RNA polymerase with the lPR promoter: large scale conformational changes in forming the kinetically significant intermediates. J Mol Biol 319:649–671

    Article  CAS  PubMed  Google Scholar 

  12. Tsodikov OV, Record MT Jr (1999) General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Es70 RNA polymerase and lambda (R) promoter DNA. Biophys J 76:1320–1329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. McClure WR, Cech CL, Johnston DE (1978) A steady state assay for the RNA polymerase initiation reaction. J Biol Chem 253:8941–8948

    CAS  PubMed  Google Scholar 

  14. Record MT Jr, Guinn EJ, Pegram LM et al (2013) Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Discuss 160:9–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Guinn EJ, Kontur WS, Tsodikov O et al (2013) Probing the protein-folding mechanism using denaturant and temperature effects on rate constants. Proc Natl Acad Sci U S A 110:16784–16789

    Article  PubMed Central  PubMed  Google Scholar 

  16. Myers JK, Pace CM, Scholtz JM (1995) Denaturant m-values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4:2138–2148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Li X, Romero P, Rani M et al (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform 10:30–40

    CAS  Google Scholar 

  18. Romero P, Obradovic Z, Li X et al (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  19. Ederth J, Artsimovitch I, Isaksson LA et al (2002) The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem 277:37456–37463

    Article  CAS  PubMed  Google Scholar 

  20. Ederth J, Isaksson LA, Abdulkarim F (2000) Origin-specific reduction of ColE1 plasmid copy number due to mutations in a distinct region of the Escherichia coli RNA polymerase. Mol Genet Genomics 267:587–592

    Article  Google Scholar 

  21. Chakraborty A, Wang D, Ebright YW et al (2012) Opening and closing of the bacterial RNA polymerase clamp. Science 337:591–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cech CL, McClure WR (1980) Characterization of ribonucleic acid polymerase-T7 promoter binary complexes. Biochemistry 19:2440–2447

    Article  CAS  PubMed  Google Scholar 

  23. Johnson RS, Chester RE (1998) Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter. J Mol Biol 283:353–370

    Article  CAS  PubMed  Google Scholar 

  24. Mekler V, Pavlova O, Severinov K (2011) Interaction of Escherichia coli RNA polymerase s70 subunit with promoter elements in the context of free s70, RNA polymerase holoenzyme, and the b′-s70 complex. J Biol Chem 286:270–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Friedman LJ, Mumm JP, Gelles J (2013) RNA polymerase approaches its promoter without sliding along DNA. Proc Natl Acad Sci U S A 110:9740–9745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research from our laboratory reviewed here is supported by NIH GM103061.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emily F. Ruff or M. Thomas Record Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruff, E.F., Kontur, W.S., Record, M.T. (2015). Using Solutes and Kinetics to Probe Large Conformational Changes in the Steps of Transcription Initiation. In: Artsimovitch, I., Santangelo, T. (eds) Bacterial Transcriptional Control. Methods in Molecular Biology, vol 1276. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2392-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2392-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2391-5

  • Online ISBN: 978-1-4939-2392-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics