Skip to main content

Advances in Instrumental Analysis Applied to the Development of Lyophilization Cycles

  • Chapter
  • First Online:
Lyophilized Biologics and Vaccines

Abstract

This chapter discusses the development of pharmaceutical product lyophilization cycles based on the coupling of process and product attributes. Cycle development is framed in the context of the recent International Conference on Harmonization Q8 R2 guidance and the quality-by-design (QbD) approach which focuses on the generation of a design space using well-known heat and mass transfer principles. The chapter briefly reviews analytical approaches used to determine critical product formulation attributes, such as the collapse temperature, and provides detailed information on a new approach to determine the collapse temperature, optical coherence tomography freeze-drying microscopy (OCT-FDM). OCT-FDM enables determination of the collapse temperature in a vial rather than a thin film, providing an improved determination approach in a relevant container system. Tunable diode laser absorption spectroscopy (TDLAS) water vapor mass flow measurements for determining both equipment limitations and product temperature behavior measurements are described. These measurements can be combined with the heat and mass transfer mathematical model to enable the determination of key process attributes during drying that affect process design and product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buera MP, et al. State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC Technical Report). Pure Appl Chem. 2011;83(8):1567–617.

    Article  CAS  Google Scholar 

  2. Terakita A, Matsunaga H, Handa T. The influence of water on the stability of lyophilized formulations with inositol and mannitol as excipients. Chem Pharm Bull (Tokyo). 2009;57(5):459–63.

    Article  CAS  Google Scholar 

  3. Sundaramurthi P, Burcusa MR, Suryanarayanan R. Physical characterization of pentamidine isethionate during freeze-drying-relevance to development of stable lyophilized product. J Pharm Sci. 2012;101(5):1732–43.

    Article  CAS  PubMed  Google Scholar 

  4. Colandene JD, et al. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci. 2007;96(6):1598–608.

    Article  CAS  PubMed  Google Scholar 

  5. Schersch K, et al. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins I: stability after freeze-drying. J Pharm Sci. 2010;99(5):2256–78.

    Article  CAS  PubMed  Google Scholar 

  6. Patel SM, Pikal MJ. Lyophilization process design space. J Pharm Sci. 2013;102(11):3883–7.

    Article  CAS  PubMed  Google Scholar 

  7. Mockus LN, et al. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study. Pharm Dev Technol. 2011;16(6):549–76.

    Article  CAS  PubMed  Google Scholar 

  8. Nail SL, Searles JA. Elements of quality by design in development and scale-up of freeze-dried parenterals. Biopharm Int. 2008;21(1):44–52.

    CAS  Google Scholar 

  9. Sundaram J, et al. Design space development for lyophilization using DOE and process modeling. Biopharm Int. 2010;23(9):26–36.

    CAS  Google Scholar 

  10. Pikal MJ, Roy ML, Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci. 1984;73(9):1224–37.

    Article  CAS  PubMed  Google Scholar 

  11. Greco K, et al. Accurate prediction of collapse temperature using optical coherence tomography-based freeze-drying microscopy. J Pharm Sci. 2013;102(6):1773–85.

    Article  CAS  PubMed  Google Scholar 

  12. Mujat M, et al. Optical coherence tomography-based freeze-drying microscopy. Biomed Opt Express. 2012;3(1):55–63.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  14. Giordano A, Barresi AA, Fissore D. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process. J Pharm Sci. 2011;100(1):311–24.

    Article  CAS  PubMed  Google Scholar 

  15. Gieseler H, et al. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying. J Pharm Sci. 2007;96(7):1776–93.

    Article  CAS  PubMed  Google Scholar 

  16. Kuu WY, Nail SL, Sacha G. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying. J Pharm Sci. 2009;98(3):1136–54.

    Article  CAS  PubMed  Google Scholar 

  17. Schneid SC, et al. Non-invasive product temperature determination during primary drying using tunable diode laser absorption spectroscopy. J Pharm Sci. 2009;98(9):3406–18.

    Article  CAS  PubMed  Google Scholar 

  18. Schneid SC, et al. Optimization of the secondary drying step in freeze drying using TDLAS technology. AAPS Pharm Sci Tech. 2011;12(1):379–87.

    Article  Google Scholar 

  19. Tang XC, Nail SL, Pikal MJ. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement. AAPS Pharm Sci Tech. 2006;7(4):97.

    Google Scholar 

  20. Kuu WY, et al. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model. Pharm Dev Technol. 2011;16(4):343–57.

    Article  CAS  PubMed  Google Scholar 

  21. Patel SM, Chaudhuri S, Pikal MJ. Choked flow and importance of Mach I in freeze-drying process design. Chem Eng Sci. 2010;65(21):5716–27.

    Article  CAS  Google Scholar 

  22. Ganguly A, Alexeenko AA. Modeling and measurements of water-vapor flow and icing at low pressures with application to pharmaceutical freeze-drying. Int J Heat Mass Transfer. 2012;55(21–22):5503–13.

    Article  Google Scholar 

  23. Patel SM, Doen T, Pikal MJ. Determination of end point of primary drying in freeze-drying process control. AAPS Pharm Sci Tech. 2010;11(1):73–84.

    Article  CAS  Google Scholar 

  24. Pikal MJ. Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying. J Parenter Sci Technol. 1985;39(3):115–39.

    CAS  PubMed  Google Scholar 

  25. Pikal MJ, et al. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by a microbalance technique. J Pharm Sci. 1983;72(6):635–50.

    Article  CAS  PubMed  Google Scholar 

  26. Pikal MJ. Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying. J Parenter Sci Technol. 1985;39(3):115–39.

    CAS  PubMed  Google Scholar 

  27. Pikal MJ, Shah S. The collapse temperature in freeze-drying—dependence on measurement methodology and rate of water removal from the glassy phase. Int J Pharm. 1990;62(2–3):165–86. PMCID:WOS:A1990DZ03800011.

    Article  CAS  Google Scholar 

  28. Meister E, Gieseler H. Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition Data. J Pharm Sci. 2009;98(9):3072–87.

    Article  CAS  PubMed  Google Scholar 

  29. Parkes AS, Smith A, editors. Recent research in freezing and drying. Oxford:Blackwell; 1960.

    Google Scholar 

  30. MacKenzie AP. Basic principles of freeze-drying for pharmaceuticals. Bull Parenter Drug Assoc. 1966;20:101–30.

    CAS  PubMed  Google Scholar 

  31. MacKenzie AP. Apparatus for microscopic observations during freeze drying (AFBR Freeze-Drying Microscope Model 2). Biodynamica. 1964;9:213–22.

    Google Scholar 

  32. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto G. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  Google Scholar 

  33. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography—principles and applications. Rep Prog Phy. 2003;66:239–303.

    Article  Google Scholar 

  34. Lexer F, Hitzenberger CK, Drexler W, Molebny S, Sattmann H, Sticker M, Fercher AF. Dynamic coherent focus OCT with depth-independent transversal resolution. J Mod Opt. 1999;46:541–53.

    Article  Google Scholar 

  35. Pircher M, Goetzinger E, Hitzenberger CK. Dynamic focus in optical coherence tomography for retinal imaging. J Biomed Opt. 2006;11:054013

    Article  CAS  PubMed  Google Scholar 

  36. Dean J. Lange’s handbook of chemistry. 13th ed. New York: McGraw-Hill; 1985.

    Google Scholar 

  37. Parker A, Rigby-Singleton S, Perkins M, Bates D, Le Roux D, Roverts CJ, Madden-Smith C, Lewis L, Teagarden DL, Johbnson RE, Ahmed SS. Determination of the influence of primary drying rates on the microscale structural attributes and physiochemical properties of protein containing lyophilized products. J Pharm Sci. 2010;99(11):4661–4629.

    Article  Google Scholar 

  38. Overcashier DE, Patapoff TW, Hsu CC. Lyophilization of protein formulations in vials: Investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse. J Pharm Sci. 1999;88(7):688–95.

    Article  CAS  PubMed  Google Scholar 

  39. Schneid SC, Stärtzel PM, Lettner P, Gieseler H. Robustness testing in pharmaceutical freeze-drying: interrelation of process conditions and product quality attributes studied for vaccine formulation. Pharm Dev Technol. 2011;16(6):583–90.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson RE, Oldroyd ME, Ahmed SS, Gieseler H, Lewis LM. Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations. J Pharm Sci. 2010;99(6):2863–73.

    CAS  PubMed  Google Scholar 

  41. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.

    Article  CAS  PubMed  Google Scholar 

  42. Chatterjee K, Shalaev EY, Suryanarayanan R. Partially crystalline systems in lyophilization: II withstanding collapse at high primary drying temperatures and impact on protein activity recovery. J Pharm Sci. 2005;94(4):809–20.

    Article  CAS  PubMed  Google Scholar 

  43. Barresi AA, Ghio S, Fissore D, Pisano R. Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality. Dry Technol. 2009;27(6):805–16.

    Article  CAS  Google Scholar 

  44. Fonseca F, Passot S, Cunin O, Marin M. Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media. Biotechnol Prog. 2004;20(1):229–38.

    Article  CAS  PubMed  Google Scholar 

  45. Werle P, Slemr F, Gehrtz M, Brauchle C. Quantum-limited FM-spectroscopy with a lead-salt diode laser. Appl Phys B. 1989;49:99–108.

    Article  Google Scholar 

  46. Bomse DS, Stanton AC, Silver JA. Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diod laser. Appl Optics. 1992;31(6):718–31.

    Article  CAS  Google Scholar 

  47. Frish MB. Overview of sensitive detection and multiplexing techniques for tunable diode laser absorption spectroscopy. In: Hollberg L, Lang RJ, editors. OSA trends in optics and photonics, Vol 31, Advanced semiconductor lasers and their applications (also 2000). Washington, DC: Optical Society of America; 1999.

    Google Scholar 

  48. Hobbs PCD. Shot noise-limited optical measurements at baseband with noisy lasers. Laser Noise 1376. Bellingham: Society of Photo-Optical Instrumentation Engineers; 1990. p. 216–21.

    Google Scholar 

  49. Haller K, Hobbs PCD. Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceler. In: Fearey BL. Optical methods for ultrasensitive detection and analysis: techniques and applications. Bellingham: Society of Photo-Optical Instrumentation Engineers; 1991. p. 298.

    Chapter  Google Scholar 

  50. Allen MG, Carleton KL, Davis SJ, Kessler WJ, Otis CE, Palombo DA, Sonnenfroh DM. Ultra-sensitive dual-beam absorption and gain spectroscopy: applications for near-ir and visible diode laser sensors. Appl Optics. 1995;34(18):3240–9.

    Article  CAS  Google Scholar 

  51. Rothman LS, et al. The HITRAN database: 1986 edition. Appl Optics. 1994;33(21):4851–67.

    Article  Google Scholar 

  52. Miller MF, Kessler WJ, Allen MG. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets. Appl Optics. 1996;35(24):4905–12.

    Article  CAS  Google Scholar 

  53. Rosenhead L, editor. Laminar boundary layers. Oxford: Oxford University Press; 1963. p. 443.

    Google Scholar 

  54. Pikal MJ, Dellerman KM, Roy ML, Riggin RM. The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res. 1991;8:427–36.

    Article  CAS  PubMed  Google Scholar 

  55. Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res. 2001;18:1345–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Figure 2 of the chapter was developed by inputs from Timothy R McCoy. The OCT-FDM development and application resulted from the dedicated work of numerous individuals at Physical Sciences Inc.: Mircea Mujat, William J. Kessler, R. Daniel Ferguson, Nicusor Iftimia, Daniel X. Hammer, Kristin Galbally-Kinney, Phillip Mulhall and Ankit Patel and The University of Connecticut: Kristyn Greco, Puneet Sharma and Michael J. Pikal.

Partial financial support for the development and application of the Optical Coherence Tomography Freeze Drying Microscopy (OCT-FDM) and Tunable Diode Laser Absorption Spectroscopy systems was provided by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering and National Cancer Institute Small Business Innovative Research Programs (awards R44EB010317 and HHSN261200900023C). The content of this chapter is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kessler, W., Sharma, P., Mujat, M. (2015). Advances in Instrumental Analysis Applied to the Development of Lyophilization Cycles. In: Varshney, D., Singh, M. (eds) Lyophilized Biologics and Vaccines. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2383-0_4

Download citation

Publish with us

Policies and ethics