Skip to main content

Abstract

Bed material controls the geometry and morphology of the channel bed as well as the suitability of the river to serve as habitat for aquatic organisms. Therefore, knowledge on bed-material load and the human impact thereon is essential for river managers and scientists. In this chapter, we present an overview of human impacts on bed-material load in the lower Rhine River and discuss its implications for river management. Although human activity did not significantly change the overall rate of bed-material load, it strongly changed the character of the transport: (1) the travel times of bed material decreased due to the prohibition of meander migration by bank protection, (2) the distribution of bed material over the Rhine delta changed due to the construction of barrages and the modification of river bifurcations, (3) a continuous exchange of bed material between the banks and the bed was initiated by shipping, and (4) the grain size of the bed material transport increased due to the effects of embankment, meander cut-offs, river narrowing, barrages, and sediment mining. The main morphological problem in large parts of the lower Rhine River is the erosion of bed material from the river bed. This process is probably induced by river narrowing, barrage construction, and sediment mining; and triggered by shipping and dredging. The ongoing bed erosion hinders navigation, infrastructure, ecology, and drinking water supply. River managers input large amounts of sediment to the river to supplement the natural bed-material load, to stabilize the river bed, and to prevent further erosion of bed sediments. At other locations, continuous dredging of bed sediment is necessary to allow year-round navigability. In order to predict the morphological behavior of a river and to develop management strategies, the downstream fluxes of bed material (sand, gravel) through the river and the sources and sinks of this material must be understood. This requires bed-load and suspended-load measurements in combination with sediment budget analyses. The current trend among river managers to reduce the number of transport measurements in favor of relying upon echo soundings is of concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Beets, D. J., & van der Spek, A. J. F. (2000). The Holocene evolution of the barrier and back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Geologie en Mijnbouw/Netherlands Journalof Geosciences, 79(1), 3–16.

    Google Scholar 

  • Berendsen, H. J. A., & Stouthamer, E. (2000). Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, The Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 311–335.

    Article  Google Scholar 

  • Berendsen, H. J. A., & Stouthamer, E. (2001). Palaeogeographic development of the Rhine-Meuse delta. Assen: Van Gorcum.

    Google Scholar 

  • Boulton A. J., Findlay S., Marmonier P., Stanley E. H., & Valett H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59–81.

    Article  Google Scholar 

  • Church M. (2006). Bed material transport and the morphology of alluvial river channels. Annual Review of Earth and Planetary Sciences, 34, 325–354. doi:10.1146/annurev.earth.33.092203.122721.

    Article  CAS  Google Scholar 

  • DGJ. (1926). Deutsches Gewässerkundliches Jahrbuch 1926, Rheingebiet Teil I-III, Bundesanstalt für Gewässerkunde, Koblenz.

    Google Scholar 

  • Einstein, H. A., Anderson, A. G., & Johnson, J. W. (1940). A distinction between bed-load and suspended load in natural streams. Transactions of the Amercian Geophysical Union, 21(2), 628–633.

    Article  Google Scholar 

  • Erkens, G. (2009). Sediment dynamics in the Rhine catchment. Quantification of fluvial response to climate change and human impact. PhD thesis Utrecht University. Netherlands Geographical Studies 388.

    Google Scholar 

  • Erkens, G., Cohen, K. M., Gouw, M. J. P., Middelkoop, H., & Hoek, W. Z. (2006). Holocene sediment budgets of the Rhine Delta (The Netherlands): a record of changing siment delivery. In J. S. Rowan, R. W. Duck, & A. Werritty (Eds.), Sediment dynamics and the hydromorphology of fluvial systems (pp. 406–415). Wallingford: International Association of Hydrological Sciences (IAHS Publication 306).

    Google Scholar 

  • Erkens, E., Hoffmann, T., Gerlach, R., & Klostermann, J. (2011). Complex fluvial response to Lateglacial and Holocene allogenic forcing in the Lower Rhine Valley (Germany). Quaternary Science Reviews, 30(5–6), 611–627.

    Article  Google Scholar 

  • Frings, R. M. (2008). Downstream fining in large sand-bed rivers. Earth-Science Reviews, 87, 39–60.

    Article  Google Scholar 

  • Frings, R. M. (2011). Sedimentary characteristics of the gravel–sand transition in the river Rhine. Journal of Sedimentary Research, 81, 52–63. doi:10.2110/jsr.2011.2

    Article  Google Scholar 

  • Frings, R. M., & Kleinhans, M. G. (2008). Complex variations in sediment transport at three large river bifurcations during discharge waves in the river Rhine. Sedimentology, 55(5), 1145–1171. doi:10.1111/j.1365–3091.2007.00940.x.

    Article  Google Scholar 

  • Frings, R. M., Kleinhans, M. G., & Vollmer, S. (2008). A porosity-based method to discriminate between wash-load and bed-material load, exemplified for the river Rhine. Sedimentology, 55(6), 1571–1193.

    Article  Google Scholar 

  • Frings, R. M., Berbee, B. M., Erkens, G., Kleinhans, M. G., & Gouw, M. J. P. (2009). Human-induced changes in bed shear stress and bed grain size in the river Waal (The Netherlands) during the past 900 years. Earth Surface Processes and Landforms, 34(4), 503–514.

    Article  Google Scholar 

  • Frings, R. M., Schüttrumpf, H., & Vollmer, S. (2011a). Verification of porosity predictors for fluvial sand-gravel deposits. Water Resources Research, 47, W07525. doi:10.1029/2010WR009690.

    Article  Google Scholar 

  • Frings, R. M., Ottevanger, W., & Sloff, C. J. (2011b). Downstream fining processes in sandy lowland rivers. Journal of Hydraulic Research, 49(2), 178–193.

    Article  Google Scholar 

  • Frings, R. M., Gehres, N., Promny, M., Middelkoop, H., Schüttrumpf, H., & Vollmer, S. (2014a). Today’s sediment budget of the Rhine river channel, focusing on the upper Rhine Graben and Rhenish Massif. Geomorphology, 204, 573–587. http://dx.doi.org/10.1016/j.geomorph.2013.08.035.

    Article  Google Scholar 

  • Frings, R. M., Döring, R., Beckhausen, C., Schüttrumpf, H., & Vollmer, S. (2014b). Fluvial sediment budget of a modern, restrained river: The lower reach of the Rhine in Germany. Catena, 122, 91–102.

    Article  Google Scholar 

  • Gouw, M. J. P., & Erkens, G. (2007). Architecture of the Holocene Rhine–Meuse delta (the Netherlands)—A result of changing external controls. Netherlands Journal of Geosciences (Geologie en Mijnbouw), 86(1), 23–54.

    Google Scholar 

  • Gölz, E. (1994). Bed degradation—Nature, causes, countermeasures. Water Science and Technology, 3, 325–333.

    Google Scholar 

  • Hesselink, A. W., Kleinhans, M. G., & Boreel, G. L. (2006). Historical discharge measurements in three Rhine branches. Journal of Hydraulic Engineering, 132(2), 140–145.

    Article  Google Scholar 

  • Hoppe, C. (1970). Die großen Flußverlagerungen des Niederrheins in den letzten zweitausend Jahren und ihre Auswirkungen auf Lage und Entwicklung der Siedlungen. Forschungen zur deutschen Landeskunde 189.

    Google Scholar 

  • Jasmund, R. (1901). Die Arbeiten der Rheinstrom-Bauverwaltung 1851 bis 1900—Denkschrift. Berlin: Mittler.

    Google Scholar 

  • Nienhuis, P. H. (2008). Environmental history of the Rhine-Meuse Delta. An ecological story on evolving human-environmental relations coping with climate change and sea-level rise. Nijmegen: Springer Science.

    Google Scholar 

  • Schmidt, M. (2000). Hochwasser und Hochwasserschutzs in Deutschland vor 1850—Eine Auswertung alter Quellen und Karten. München: Oldenbourg.

    Google Scholar 

  • Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), 1–19.

    Article  Google Scholar 

  • Ten Brinke, W. (2005). The Dutch Rhine, a restrained river. Diemen: Veen Magazines.

    Google Scholar 

  • Ten Brinke, W. B. M., Schulze, F. H., & Van der Veer, P. (2004). Sand exchange between groyne field beaches along the Rhine and the main channel: The impact of navigation traffic versus river flow. River Research and Applications, 20, 899–928.

    Article  Google Scholar 

  • Topografische Dienst. (1915–1919). Bovenrijn, Waal, Boven- en Benedenmerwede, Noord, Dordtsche Kil, Oude Maas, Spui, Brielsche Nieuwe Maas (river map of the Netherlands, 2nd revision), scale 1:10,000. ’s-Gravenhage-Delft: Topografische Dienst.

    Google Scholar 

  • Topographische Inrigting. (1873–1884). Herziene kaart van de rivieren Boven Rijn, Waal, Merwede, Noord, Dordsche Kil, Oude Maas, Spui en Nieuwe Maas (river map of the Netherlands, 1st revision), scale 1:10,000. ‘s-Gravenhage: Topographische Inrigting.

    Google Scholar 

  • Tümmers, H. J. (1999). Der Rhein—Ein europäischer Fluss und seine Geschichte. (2. überarbeitete und aktualisierte Auflage). München: Beck.

    Google Scholar 

  • Van de Ven, G. P. (1976). Aan de wieg van Rijkswaterstaat: wordingsgeschiedenis van het Pannerdens Kanaal. Zutphen: De Walburg Pers.

    Google Scholar 

  • Van de Ven, G. P. (1993). Man-made lowlands—history of water management and land reclamation in the Netherlands. Utrecht: Matrijs.

    Google Scholar 

  • Van Heiningen, H. (1991). Diepers & Delvers—Geschiedenis van de zand—en grindbaggeraars. Zutphen: Walburg Pers.

    Google Scholar 

  • Walling, W. E. (2006). Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology, 79(3–4), 192–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy. M. Frings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Frings, R. (2015). Sand and Gravel on the Move: Human Impacts on Bed-Material Load Along the Lower Rhine River. In: Hudson, P., Middelkoop, H. (eds) Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2380-9_2

Download citation

Publish with us

Policies and ethics