Skip to main content

Measurements of Rhodopsin Diffusion Within Signaling Membrane Microcompartments in Live Photoreceptors

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

  • 1850 Accesses

Abstract

High-resolution multiphoton imaging of live cells has become an invaluable method to study protein dynamics in highly compartmentalized subcellular environments. Here we describe procedures that we recently developed to quantify rhodopsin mobility within and between retinal rod photoreceptor light signaling microcompartments, the disc membrane lobules, using multiphoton fluorescence relaxation after photoconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pugh EN Jr, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Stavenga DG, de Grip WJ, Pugh EN Jr (eds) Handbook of biological physics. Elsevier Science B. V., New York, pp 183–255

    Google Scholar 

  2. Drzymala RE, Weiner HL, Dearry CA et al (1984) A barrier to lateral diffusion of porphyropsin in Necturus rod outer segment disks. Biophys J 45:683–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Govardovskii VI, Korenyak DA, Shukolyukov SA et al (2009) Lateral diffusion of rhodopsin in photoreceptor membrane: a reappraisal. Mol Vis 15:1717–1729

    PubMed Central  PubMed  Google Scholar 

  4. Gupta BD, Williams TP (1990) Lateral diffusion of visual pigments in toad (Bufo marinus) rods and in catfish (Ictalurus punctatus) cones. J Physiol 430:483–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Liebman PA, Entine G (1974) Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 185:457–459

    Article  CAS  PubMed  Google Scholar 

  6. Poo M, Cone RA (1973) Lateral diffusion of rhodopsin in the visual receptor membrane. J Supramol Struct 1:354

    Article  CAS  PubMed  Google Scholar 

  7. Poo M, Cone RA (1974) Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247:438–441

    Article  CAS  PubMed  Google Scholar 

  8. Saxton MJ (1987) Lateral diffusion in an archipelago. The effect of mobile obstacles. Biophys J 52:989–997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wey CL, Cone RA, Edidin MA (1981) Lateral diffusion of rhodopsin in photoreceptor cells measured by fluorescence photobleaching and recovery. Biophys J 33:225–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang Q, Zhang X, Zhang L et al (2008) Activation-dependent hindrance of photoreceptor G protein diffusion by lipid microdomains. J Biol Chem 283:30015–30024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Najafi M, Haeri M, Knox BE et al (2012) Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors. J Gen Physiol 140:249–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  PubMed  Google Scholar 

  13. Knox BE, Schlueter C, Sanger BM et al (1998) Transgene expression in Xenopus rods. FEBS Lett 423:117–121

    Article  CAS  PubMed  Google Scholar 

  14. Haeri M, Knox BE (2012) Generation of transgenic Xenopus using restriction enzyme-mediated integration. Methods Mol Biol 884:17–39

    Article  CAS  PubMed  Google Scholar 

  15. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    CAS  PubMed  Google Scholar 

  16. Calvert PD, Peet JA, Bragin A et al (2007) Fluorescence relaxation in 3D from diffraction-limited sources of PAGFP or sinks of EGFP created by multiphoton photoconversion. J Microsc 225:49–71

    Article  CAS  PubMed  Google Scholar 

  17. Peet JA, Bragin A, Calvert PD et al (2004) Quantification of the cytoplasmic spaces of living cells with EGFP reveals arrestin-EGFP to be in disequilibrium in dark adapted rod photoreceptors. J Cell Sci 117:3049–3059

    Article  CAS  PubMed  Google Scholar 

  18. Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Corless JM, Fetter RD, Zampighi OB et al (1987) Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: II. Organization of the terminal loop complex. J Comp Neurol 257:9–23

    Article  CAS  PubMed  Google Scholar 

  20. Tsukamoto Y (1987) The number, depth and elongation of disc incisures in the retinal rod of Rana catesbeiana. Exp Eye Res 45:105–116

    Article  CAS  PubMed  Google Scholar 

  21. Roof DJ, Heuser JE (1982) Surfaces of rod photoreceptor disk membranes: integral membrane components. J Cell Biol 95:487–500

    Article  CAS  PubMed  Google Scholar 

  22. Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    CAS  PubMed  Google Scholar 

  23. Najafi M, Maza NA, Calvert PD (2012) Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc Natl Acad Sci U S A 109:203–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sidman RL (1957) The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J Biophys Biochem Cytol 3:15–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schiesser WE (1991) The numerical method of lines: integration of partial differential equations. Academic, San Diego

    Google Scholar 

  26. Schiesser WE, Griffiths GW (2009) A compendium of partial differential equation models: method of lines analysis with MATLAB. Cambridge University Press, New York

    Book  Google Scholar 

  27. Calvert PD, Schiesser WE, Pugh EN Jr (2010) Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J Gen Physiol 135:173–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chesneau A, Sachs LM, Chai N et al (2008) Transgenesis procedures in Xenopus. Biol Cell 100:503–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grant R01EY018421 to P.D.C., a Research to Prevent Blindness, Inc. Career Development Award (P.D.C.), a grant from the Karl Kirchgessner Foundation (P.D.C.), and Lions district 20-Y1. The SUNY Upstate Department of Ophthalmology is recipient of an unrestricted grant from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Calvert Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Najafi, M., Calvert, P.D. (2015). Measurements of Rhodopsin Diffusion Within Signaling Membrane Microcompartments in Live Photoreceptors. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics