Skip to main content

Immunocytochemistry of Microglial Cells

  • Protocol
  • First Online:
Immunocytochemistry and Related Techniques

Part of the book series: Neuromethods ((NM,volume 101))

Abstract

Microglial cells are the resident macrophages of the central nervous system involved in all pathological processes in the brain as well as postnatal neurogenesis , aging , and synaptic plasticity . Therefore, the identification of microgliocytes is important for experimental neuroscience and clinical histopathological studies. This chapter presents a detailed protocol of Iba1 -immunocytochemistry to be used for detecting the microglial cells in paraffin sections of the brain of laboratory animals (mouse , rat , and rabbit ) and humans by using the same primary antibody through species . The preparations are suitable for transmitted light microscopy and confocal laser microscopy . The advantage of the paraffin sections is a better preservation of morphological details, the possibility to use archival material stored for a long time, the relative ease of tissue processing, and the opportunity to standardize the separate procedures and the protocol as a whole. The high intensity of immunocytochemical reaction, absence of nonspecific background staining , and clear visualization of cell processes allow performing the automated analysis of three-dimensional (3D ) organization of microglia .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  2. Kaur C, Rathnasamy G, Ling EA (2013) Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol 8:66–78

    Article  PubMed  Google Scholar 

  3. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  4. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    Article  CAS  PubMed  Google Scholar 

  5. Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206

    Article  PubMed Central  PubMed  Google Scholar 

  6. Korzhevskii DE, Kirik OV, Sukhorukova EG et al (2013) Structural organization of striatal microgliocytes after transient focal ischemia. Neurosci Behav Physiol 43:457–460

    Article  Google Scholar 

  7. Gentleman SM (2013) Review: microglia in protein aggregation disorders: friend or foe? Neuropathol Appl Neurobiol 39:45–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60:251–266

    Article  CAS  Google Scholar 

  9. Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61:62–70

    Article  PubMed  Google Scholar 

  10. Monji A, Kato TA, Mizoguchi Y et al (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 42:115–121

    Article  CAS  PubMed  Google Scholar 

  11. Sobin C, Montoya MG, Parisi N et al (2013) Microglial disruption in young mice with early chronic lead exposure. Toxicol Lett 220:44–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  CAS  PubMed  Google Scholar 

  13. Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  Google Scholar 

  14. Wake H, Moorhouse AJ, Miyamoto A et al (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36:209–217

    Article  CAS  PubMed  Google Scholar 

  15. Kaur C, Ling EA (1999) Increased expression of transferrin receptors and iron in amoeboid microglial cells in postnatal rats following an exposure to hypoxia. Neurosci Lett 26:183–186

    Article  Google Scholar 

  16. Ling EA, Kaur C, Yick TY et al (1990) Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat Embryol 182:481–486

    CAS  PubMed  Google Scholar 

  17. Streit WJ, Sammons NW, Kuhns AJ et al (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212

    Article  PubMed  Google Scholar 

  18. Greter M, Merad M (2013) Regulation of microglia development and homeostasis. Glia 61:121–127

    Article  PubMed  Google Scholar 

  19. Manzhulo IV, Ogurtsova OS, Dyuizen IV et al (2007) The specific response of neurons and glial cells of the ventromedial reticular formation in the rat brainstem to acute pain. Neurochemical J 7:62–68

    Article  Google Scholar 

  20. Imai Y, Ibata I, Ito D et al (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862

    Article  CAS  PubMed  Google Scholar 

  21. Yamada M, Ohsawa K, Imai Y et al (2006) X-ray structures of the microglia/macrophage-specific protein Iba 1 from human and mouse demonstrate novel molecular conformation change induced by calcium binding. J Mol Biol 364:449–457

    Article  CAS  PubMed  Google Scholar 

  22. Deininger MH, Meyermann R, Schluesener HJ (2002) The allograft inflammatory factor-1 family of proteins. FEBS Lett 514:115–121

    Article  CAS  PubMed  Google Scholar 

  23. Kohler C (2007) Allograft inflammatory factor-1/ionized calcium-binding adapter molecule 1 is specifically expressed by most subpopulations of macrophages and spermatids in testis. Cell Tissue Res 33:291–302

    Article  Google Scholar 

  24. Kirik OV, Sukhorukova EG, Korzhevskii DE (2011) Calcium-binding protein Iba-1/AIF-1 in rat brain cells. Neurosci Behav Physiol 41:149–152

    Article  CAS  Google Scholar 

  25. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    Article  CAS  PubMed  Google Scholar 

  26. Moon JB, Lee CH, Park CW et al (2009) Neuronal degeneration and microglial activation in the ischemic dentate gyrus of the gerbil. J Vet Med Sci 71:1381–1386

    Article  PubMed  Google Scholar 

  27. Shapiro LA, Perez ZD, Foresti ML et al (2009) Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Res 1266:29–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Korzhevskii DE, Lentsman MV, Kirik OV et al (2013) Morphological types of activated microglial cells in the hippocampus present after transient total cerebral ischemia. Neurosci Behav Physiol 43:861–864

    Article  Google Scholar 

  29. Korzhevskiĭ DE, Sukhorukova EG, Gilerovich EG et al (2013) Advantages and disadvantages of zink-ethanol-formaldehyde as a fixative for immunocytochemistry and confocal laser microscopy. Morfologiia 143:81–85

    PubMed  Google Scholar 

  30. Sukhorukova EG, Zakhryapin MS, Anichkov NM et al (2012) Microglia detection in the brain preparations after long-term storage in formalin. Morfologiia 142:68–71

    CAS  PubMed  Google Scholar 

  31. Wang D, Kaur C (2000) Response of epiplexus cells associated with the choroid plexus in the lateral ventricles of adult rats to high altitude exposure. Neurosci Lett 285:197–200

    Article  CAS  PubMed  Google Scholar 

  32. Sarnat HB (2013) Clinical neuropathology practice guide 5-2013: markers of neuronal maturation. Clin Neuropathol 32:340–369

    Article  PubMed Central  PubMed  Google Scholar 

  33. Sukhorukova EG, Kirik OV, Korzhevskii DE (2010) The use of immunohistochemical method for detection of brain microglia in paraffin sections. Bull Exp Biol Med 149:768–770

    Article  Google Scholar 

  34. Kolos EA, Korzhevskii DE (2013) Decalcification in formic acid after fixation in zinc-ethanol-formaldehyde does not preclude identification of neuronal and glial markers. Morfologiia 144:76–79

    CAS  PubMed  Google Scholar 

  35. Pileri SA, Roncador G, Ceccarelli C et al (1997) Antigen retrieval techniques in immunohistochemistry: comparison of different methods. J Pathol 183:116–123

    Article  CAS  PubMed  Google Scholar 

  36. Roussel AJ, Knol AC, Bourdeau PJ et al (2014) Optimization of an immunohistochemical method to assess distribution of tight junction proteins in canine epidermis and adnexae. J Comp Pathol 150:35–46

    Article  CAS  PubMed  Google Scholar 

  37. Lyck L, Dalmau I, Chemnitz J (2008) Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histochem Cytochem 56:201–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study is supported by the Russian Fund for Basic Researches (RFBR#14-04-00049а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii E. Korzhevskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Korzhevskii, D.E., Kirik, O., Sukhorukova, E. (2015). Immunocytochemistry of Microglial Cells. In: Merighi, A., Lossi, L. (eds) Immunocytochemistry and Related Techniques. Neuromethods, vol 101. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2313-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2313-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2312-0

  • Online ISBN: 978-1-4939-2313-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics