Skip to main content

The Evolution of Immunocytochemistry in the Dissection of Neural Complexity

  • Protocol
  • First Online:
Immunocytochemistry and Related Techniques

Part of the book series: Neuromethods ((NM,volume 101))

  • 1644 Accesses

Abstract

After more than 70 years from its initial development, immunocytochemistry (ICC ) has become a fundamental technique in the study of the nervous system . After a brief excursus along the history of the different techniques that led to substantial amelioration of the original indirect immunofluorescence protocol, we discuss here the main advantages and disadvantages of the individual techniques for the study of central and peripheral neurons, in parallel with standardization , quantification , and reaction bias . Particular attention is given to immunofluorescence and its novel developments that allow high-resolution imaging at the light microscope level. The possibility of combining ICC with other fundamental techniques for analysis of neuronal circuitry such as neurotracing , electrophysiology , and molecular biology is also discussed, as well as a series of approaches for correlative light and electron microscopic studies.

The emerging picture is that ICC still represents an invaluable tool for histological and cytological analysis of neural complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term was coined by Paul Ehrlich at the end of the nineteenth century when he developed in his side-chain theory to explain the immune response-->.

  2. 2.

    Albeit the terms fluorochrome--> and fluorophore are often used as synonyms, we will use fluorochrome to indicate a fluorescent dye or protein used either directly as a specimen stain or conjugated to a biologically active substance to make a fluorophore (fluorescent probe).

  3. 3.

    John William Strutt, third Baron Rayleigh, 1842–1919

  4. 4.

    The existence of the stimulated emission--> process was first theoretically postulated by Einstein back in 1917. Now it is recognized as an universal optical process in which a molecule at its excited state can be stimulated down to its ground state by an incident photon with proper frequency, simultaneously creating a new coherent photon with the same phase, frequency, polarization, and direction as the incident one.

  5. 5.

    An evanescent wave is a near-field standing wave with an intensity that exhibits exponential decay--> with distance from the boundary at which the wave was formed.

References

  1. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 47:200–202

    CAS  Google Scholar 

  2. Ehrlich P (1877) Beiträge zur kenntniss der anilinfärbungen und ihre verwendung in der mikroskopischen. Technik Arch Mikr Anat 13:263–277

    Google Scholar 

  3. Marrack JR (1934) Nature of antibodies. Nature 133:292–293

    CAS  Google Scholar 

  4. Marrack JR (1934) Derived antigens as a means of studying the relation of specific combination to chemical structure: (section of therapeutics and pharmacology). Proc R Soc Med 27:1063–1065

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Avrameas S, Uriel J (1966) Method of antigen and antibody labelling with enzymes and its immunodiffusion application. C R Acad Sci Hebd Seances Acad Sci D 262:2543–2545

    CAS  PubMed  Google Scholar 

  7. Nakane PK, Pierce GB Jr (1966) Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem 14:929–931

    CAS  PubMed  Google Scholar 

  8. Nakane PK, Pierce GB (1967) Enzyme labeled antibodies for the light and electron microscopic localization of tissue antigens. J Cell Biol 33:307–318

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Nakane PK (1968) Simultaneous localisation of multiple tissue antigens using the peroxidase-labelled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 16:557–560

    CAS  PubMed  Google Scholar 

  10. Sternberger LA, Hardy PJJ, Cucculis JJ et al (1970) The unlabeled antibody-enzyme method of immunohisto-chemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti-horseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    CAS  PubMed  Google Scholar 

  11. Mason DY, Sammons R (1978) Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. J Clin Pathol 31:454–460

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Cordell JL, Falini B, Erber WN et al (1984) Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32:219–229

    CAS  PubMed  Google Scholar 

  13. Singer SJ (1959) Preparation of an electron dense antibody conjugate. Nature 183:1523–1524

    CAS  PubMed  Google Scholar 

  14. Moriarty GC, Moriarty CM, Sternberger LA (1973) Ultrastructural immunocytochemistry with unlabelled antibodies and the peroxidase-antiperoxidase complex. A technique more sensitive than radioimmunoassay. J Histochem Cytochem 21:825–836

    CAS  PubMed  Google Scholar 

  15. Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083

    CAS  PubMed  Google Scholar 

  16. Roth J (1982) The preparation of protein A-gold complexes with 3 nm and 15 nm gold particles and their use in labelling multiple antigens on ultrathin sections. Histochem J 14:791–801

    CAS  PubMed  Google Scholar 

  17. Roth J (1982) The protein A-gold (pAg) technique - a qualitative and quantitative approach for antigen localization on thin sections. In: Bullock GR, Petrusz P (eds) Techniques in immunohistochemistry, 1st edn. Academic, New York, pp 107–134

    Google Scholar 

  18. Huang SN, Minassian H, More JD (1976) Application of immunofluorescent staining on paraffin sections improved by trypsin digestion. Lab Invest 35:383–390

    CAS  PubMed  Google Scholar 

  19. Hsu SM, Raine L (1981) Protein A, avidin, and biotin in immunohistochemistry. J Histochem Cytochem 29:1349–1353

    CAS  PubMed  Google Scholar 

  20. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–587

    CAS  PubMed  Google Scholar 

  21. Hsu SM, Raine L (1982) Versatility of biotin-labeled lectins and avidin-biotin- peroxidase complex for localization of carbohydrate in tissue sections. J Histochem Cytochem 30:157–161

    CAS  PubMed  Google Scholar 

  22. Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol 75:816–821

    CAS  PubMed  Google Scholar 

  23. Schwyzer R (1980) Structure and function in neuropeptides. Proc R Soc Lond B Biol Sci 210:5–20

    CAS  PubMed  Google Scholar 

  24. Boer GJ, Swaab DF, Uylings HB et al (1980) Neuropeptides in rat brain development. Prog Brain Res 53:207–227

    CAS  PubMed  Google Scholar 

  25. Polak JM, Van Noorden S (1986) Immunocytochemistry, modern methods and applications, 2nd edn. John Wright and Sons, Bristol

    Google Scholar 

  26. Hökfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225:1326–1334

    PubMed  Google Scholar 

  27. Hökfelt T, Johansson O, Ljungdahl A et al (1980) Peptidergic neurones. Nature 284:515–521

    PubMed  Google Scholar 

  28. Hökfelt T (1986) Chemical neurotransmission as seen from the histochemical side, In: Panula P, Päivärinta H, Soinila S (eds) Neurohistochemistry: modern methods and application. Alan R. Liss, New York, pp 331–353

    Google Scholar 

  29. Merighi A (2002) Costorage and coexistence of neuropeptides in the mammalian CNS. Prog Neurobiol 66:161–190

    CAS  PubMed  Google Scholar 

  30. Merighi A (2009) Neuropeptides and coexistence. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 843–849

    Google Scholar 

  31. Gulbenkian S, Merighi A, Wharton J et al (1986) Ultrastructural evidence for the coexistence of calcitonin gene- related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig. J Neurocytol 15:535–542

    CAS  PubMed  Google Scholar 

  32. Merighi A, Polak JM, Fumagalli G et al (1989) Ultrastructural localisation of neuropeptides and GABA in the rat dorsal horn: a comparison of different immunogold labelling techniques. J Histochem Cytochem 37:529–540

    CAS  PubMed  Google Scholar 

  33. Ottersen OP (1987) Postembedding light- and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specificity testing and tissue processing. Exp Brain Res 69:167–174

    CAS  PubMed  Google Scholar 

  34. Ottersen OP (1989) Quantitative electron microscopic immunocytochemistry of neuroactive amino acids. Anat Embryol 180:1–15

    CAS  PubMed  Google Scholar 

  35. Ottersen OP, Störm-Mathisen J (1986) Excitatory amino acids pathways in the brain. In: Ben Ari Y, Schwarcz R (eds) Excitatory amino acids and epilepsy. Plenum, New York, pp 263–284

    Google Scholar 

  36. Bergersen LH, Storm-Mathisen J, Gundersen V (2008) Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat Protoc 3:144–152

    CAS  PubMed  Google Scholar 

  37. Celio MR, Keller GA, Bloom FE (1986) Immunoelectronmicroscopy of neural antigens on ultrathin frozen sections. J Histochem Cytochem 34:491–500

    CAS  PubMed  Google Scholar 

  38. Gulik-Krzywicki T (1994) Electron microscopy of cryofixed biological specimens. Biol Cell 80:161–163

    CAS  PubMed  Google Scholar 

  39. Colbert SH, Mack AF, Fernald RD (1995) A novel, rapid flat-mounting technique for visualizing antibody labeling in the retina. J Neurosci Methods 62:179–183

    CAS  PubMed  Google Scholar 

  40. Costa M, Brookes SJ, Steele PA et al (1996) Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75:949–967

    CAS  PubMed  Google Scholar 

  41. Mitsui R (2009) Characterisation of calcitonin gene-related peptide-immunoreactive neurons in the myenteric plexus of rat colon. Cell Tissue Res 337:37–43

    CAS  PubMed  Google Scholar 

  42. Wharton J, Gulbenkian S, Mulderry PK et al (1986) Capsaicin induces a depletion of calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the cardiovascular system of the guinea pig and rat. J Auton Nerv Syst 16:289–309

    CAS  PubMed  Google Scholar 

  43. Doodnath R, Dervan A, Wride MA et al (2010) Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development. Pediatr Surg Int 26:1217–1221

    PubMed  Google Scholar 

  44. Saina M, Benton R (2013) Visualizing olfactory receptor expression and localization in Drosophila. Methods Mol Biol 1003:211–228

    CAS  PubMed  Google Scholar 

  45. Priestley JV, Alvarez FJ, Averill S (1992) Pre-embedding electron microscopic immunocytochemistry. In: Polak JM, Priestley JV (eds) Electron microscopic immunocytochemistry. Oxford University Press, Oxford, pp 89–121

    Google Scholar 

  46. Ribeiro-Da-Silva A, Priestley JV, Cuello AC (1993) Pre-embedding ultrastructural immunocytochemistry. In: Cuello AC (ed) Immunohistochemistry, 2nd edn. Wiley, Chichester, pp 181–228

    Google Scholar 

  47. Merighi A (1992) Post-embedding electron microscopic immunocytochemistry. In: Polak JM, Priestley JV (eds) Electron microscopic immunocytochemistry. Oxford University Press, London, pp 51–87

    Google Scholar 

  48. Merighi A, Polak JM (1993) Post-embedding immunogold staining. In: Cuello AC (ed) Immunohistochemistry, 2nd edn. Wiley, London, New York, pp 229–264

    Google Scholar 

  49. Aimar P, Lossi L, Merighi A (1997) Immunogold labeling for transmission electron microscopy: exploring new frontiers. Cell Vision 4:394–407

    Google Scholar 

  50. Aimar P, Lossi L, Merighi A (2002) Immunocytochemical labeling methods and related techniques for ultrastructural analysis of neuronal connectivity. In: Merighi A, Carmignoto G (eds) Cellular and molecular methods in neuroscience research. Springer, New York, pp 161–180

    Google Scholar 

  51. Frotscher M, Nitsch R, Linke R et al (1992) Identification of neuronal connections by means of electron microscopic immunocytochemistry. Arzneimittelforschung 42:184–189

    CAS  PubMed  Google Scholar 

  52. Osamura RY, Itoh Y, Matsuno A (2000) Applications of plastic embedding to electron microscopic immunocytochemistry and in situ hybridization in observations of production and secretion of peptide hormones. J Histochem Cytochem 48:885–891

    CAS  PubMed  Google Scholar 

  53. Johnson D (2007) Handbook of neurochemistry and molecular neurobiology. Springer, New York

    Google Scholar 

  54. Burry RW (2010) Immunocytochemistry: a practical guide for biomedical research. Springer, New York

    Google Scholar 

  55. Saper CB (2009) A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem 57:1–5

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Fritschy JM (2008) Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur J Neurosci 28:2365–2370

    PubMed  Google Scholar 

  57. Hofman FM, Taylor CR (2013) Immunohistochemistry. Curr Protoc Immunol 103:21.4.1–21.4.26

    Google Scholar 

  58. Fritschy JM, Weinmann O, Wenzel A et al (1998) Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    CAS  PubMed  Google Scholar 

  59. Sherriff FE, Bridges LR, Jackson P (1994) Microwave antigen retrieval of beta-amyloid precursor protein immunoreactivity. Neuroreport 5:1085–1088

    CAS  PubMed  Google Scholar 

  60. Christensen DZ, Bayer TA, Wirths O (2009) Formic acid is essential for immunohistochemical detection of aggregated intraneuronal Abeta peptides in mouse models of Alzheimer’s disease. Brain Res 1301:116–125

    CAS  PubMed  Google Scholar 

  61. Ottersen OP, Störm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    CAS  PubMed  Google Scholar 

  62. Ottersen OP, Bramham CR (1988) Quantitative electron microscopic immunocytochemistry of excitatory amino acids. In: Cavalheiro EA, Lehmann J, Turski L (eds) Frontiers in excitatory amino acids research. Alan R Liss, New York, pp 93–100

    Google Scholar 

  63. Maxwell DJ, Ottersen OP, Störm-Mathisen J (1995) Synaptic organization of excitatory and inhibitory boutons associated with spinal neurons which project through the dorsal columns of the cat. Brain Res 676:103–112

    CAS  PubMed  Google Scholar 

  64. Merighi A, Polak JM, Theodosis DT (1991) Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn with special reference to the co-localization of glutamate, substance P and calcitonin gene-related peptide. Neuroscience 40:67–80

    CAS  PubMed  Google Scholar 

  65. Mason TE, Phifer RF, Spicer SS et al (1969) An immunoglobulin-enzyme bridge method for localizing tissue antigens. J Histochem Cytochem 17:563–569

    CAS  PubMed  Google Scholar 

  66. Chilosi M, Lestani M, Pedron S et al (1994) A rapid immunostaining method for frozen sections. Biotech Histochem 69:235–239

    CAS  PubMed  Google Scholar 

  67. Sabattini E, Bisgaard K, Ascani S et al (1998) The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 51:506–511

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Gross AJ, Sizer IW (1959) The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J Biol Chem 234:1611–1614

    CAS  PubMed  Google Scholar 

  69. Bobrow MN, Harris TD, Shaughnessy KJ et al (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125:279–285

    CAS  PubMed  Google Scholar 

  70. Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463

    CAS  PubMed  Google Scholar 

  71. Merz H, Malisius R, Mannweiler S et al (1995) ImmunoMax. A maximized immunohistochemical method for the retrieval and enhancement of hidden antigens. Lab Invest 73:149–156

    CAS  PubMed  Google Scholar 

  72. Priestley JV (1984) Pre-embedding ultrastructural immunocytochemistry: immunoenzyme techniques. In: Polak JM, Varndell IM (eds) Immunolabelling for electron microscopy. Elsevier, Amsterdam, pp 37–52

    Google Scholar 

  73. Anderson KD, Karle EJ, Reiner A (1994) A pre-embedding triple-label electron microscopic immunohistochemical method as applied to the study of multiple inputs to defined tegmental neurons. J Histochem Cytochem 42:49–56

    CAS  PubMed  Google Scholar 

  74. Vandersande F (1983) Immunohistochemical double staining techniques. In: Cuello AC (ed) Immunohistochemistry, 1st edn. Wiley, Chichester, pp 257–272

    Google Scholar 

  75. Lossi L, Ghidella S, Marroni P et al (1995) The neurochemical maturation of the rabbit cerebellum. J Anat 187:709–722

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Pawley JB (ed) (2006) Handbook of biological confocal microscopy (3rd Ed). Springer, New York

    Google Scholar 

  77. Falk MM, Lauf U (2001) High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech 52:251–262

    CAS  PubMed  Google Scholar 

  78. Stehbens S, Pemble H, Murrow L et al (2012) Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol 504:293–313

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Nakano A (2002) Spinning-disk confocal microscopy – a cutting-edge tool for imaging of membrane traffic. Cell Struct Funct 27:349–355

    PubMed  Google Scholar 

  80. Salio C, Lossi L, Merighi A (2011) Combined light and electron microscopic localization of neuropeptides and their receptors in central neurons. In: Merighi A (ed) Neuropeptides methods and protocols. Humana, New York

    Google Scholar 

  81. Takizawa T, Robinson JM (2003) Ultrathin cryosections: an important tool for immunofluorescence and correlative microscopy. J Histochem Cytochem 51:707–714

    CAS  PubMed  Google Scholar 

  82. Takizawa T, Robinson JM (1994) Use of 1.4-nm immunogold particles for immunocytochemistry on ultra-thin cryosections. J Histochem Cytochem 42:1615–1623

    CAS  PubMed  Google Scholar 

  83. Powell RD, Halsey CM, Spector DL et al (1997) A covalent fluorescent-gold immunoprobe: simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. J Histochem Cytochem 45:947–956

    CAS  PubMed  Google Scholar 

  84. Takizawa T, Robinson JM (2000) FluoroNanogold is a bifunctional immunoprobe for correlative fluorescence and electron microscopy. J Histochem Cytochem 48:481–486

    CAS  PubMed  Google Scholar 

  85. Robinson JM, Takizawa T (2009) Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 235:259–272

    CAS  PubMed  Google Scholar 

  86. Takizawa T, Robinson JM (2012) Correlative fluorescence and transmission electron microscopy in tissues. Methods Cell Biol 111:37–57

    CAS  PubMed  Google Scholar 

  87. Kirizs T, Kerti-Szigeti K, Lorincz A et al (2014) Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells. Eur J Neurosci 39:1771–1783

    PubMed Central  PubMed  Google Scholar 

  88. Hamzei-Sichani F, Kamasawa N, Janssen WG et al (2007) Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proc Natl Acad Sci U S A 104:12548–12553

    PubMed Central  PubMed  Google Scholar 

  89. Kamasawa N, Sik A, Morita M et al (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136:65–86

    PubMed Central  CAS  PubMed  Google Scholar 

  90. DeLellis RA, Sternberger LA, Mann RB et al (1979) Immunoperoxidase technics in diagnostic pathology. Report of a workshop sponsored by the National Cancer Institute. Am J Clin Pathol 71:483–488

    CAS  PubMed  Google Scholar 

  91. Gunneras S, Agaton C, Djerbi S et al (2008) Prestige Antibodies–monospecific antibodies designed for immunohistochemical analysis. Biotechniques 44:825–828

    PubMed  Google Scholar 

  92. Gunneras SA, Agaton C, Djerbi S et al (2008) Prestige Antibodies-monospecific antibodies designed for immunohistochemical analysis. Biotechniques 44:573–576

    PubMed  Google Scholar 

  93. Schatzle P, Wuttke R, Ziegler U et al (2012) Automated quantification of synapses by fluorescence microscopy. J Neurosci Methods 204:144–149

    PubMed  Google Scholar 

  94. Joint Task Force of the EFNS and the PNS (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst 15: 79–92.

    Google Scholar 

  95. Grunewald A, Lax NZ, Rocha MC et al. (2014) Quantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue. J Neurosci Methods. http://dx.doi.org/10.1016/j.jneumeth.2014.05.026

  96. Mutch SA, Gadd JC, Fujimoto BS et al (2011) Determining the number of specific proteins in cellular compartments by quantitative microscopy. Nat Protoc 6:1953–1968

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Ficarra E, Di CS, Acquaviva A et al (2011) Automated segmentation of cells with IHC membrane staining. IEEE Trans Biomed Eng 58:1421–1429

    PubMed  Google Scholar 

  98. Zehntner SP, Chakravarty MM, Bolovan RJ et al (2008) Synergistic tissue counterstaining and image segmentation techniques for accurate, quantitative immunohistochemistry. J Histochem Cytochem 56:873–880

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Liu T, Li G, Nie J et al (2008) An automated method for cell detection in zebrafish. Neuroinformatics 6:5–21

    PubMed  Google Scholar 

  100. Lopez C, Lejeune M, Salvado MT et al (2008) Automated quantification of nuclear immunohistochemical markers with different complexity. Histochem Cell Biol 129:379–387

    CAS  PubMed  Google Scholar 

  101. Tolivia J, Navarro A, del VE et al (2006) Application of Photoshop and Scion Image analysis to quantification of signals in histochemistry, immunocytochemistry and hybridocytochemistry. Anal Quant Cytol Histol 28:43–53

    PubMed  Google Scholar 

  102. Jaskolski F, Mulle C, Manzoni OJ (2005) An automated method to quantify and visualize colocalized fluorescent signals. J Neurosci Methods 146:42–49

    CAS  PubMed  Google Scholar 

  103. Somogyi P (1990) Synaptic connections of neurones identified by Golgi impregnation: characterization by immunocytochemical, enzyme histochemical, and degeneration methods. J Electron Microsc Tech 15:332–351

    CAS  PubMed  Google Scholar 

  104. Ferrer I, Genis D, Davalos A et al (1994) The Purkinje cell in olivopontocerebellar atrophy. A Golgi and immunocytochemical study. Neuropathol Appl Neurobiol 20:38–46

    CAS  PubMed  Google Scholar 

  105. McCoy ES, Taylor-Blake B, Zylka MJ (2012) CGRPalpha-expressing sensory neurons respond to stimuli that evoke sensations of pain and itch. PLoS One 7:e36355

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Carr PA, Liu M, Zaruba RA (2001) Enzyme histochemical profile of immunohistochemically identified Renshaw cells in rat lumbar spinal cord. Brain Res Bull 54:669–674

    CAS  PubMed  Google Scholar 

  107. Valtschanoff JG, Weinberg RJ, Rustioni A (1992) NADPH diaphorase in the spinal cord of rats. J Comp Neurol 321:209–222

    CAS  PubMed  Google Scholar 

  108. Berezhnaya LA (2005) NADPH-diaphorase-positive cells in the thalamic nuclei and internal capsule in humans. Neurosci Behav Physiol 35:273–279

    CAS  PubMed  Google Scholar 

  109. Aimar P, Pasti L, Carmignoto G et al (1998) Nitric oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelatinosa. J Neurosci 18:10375–10388

    CAS  PubMed  Google Scholar 

  110. Lukas JR, Aigner M, Denk M et al (1998) Carbocyanine postmortem neuronal tracing. Influence of different parameters on tracing distance and combination with immunocytochemistry. J Histochem Cytochem 46:901–910

    CAS  PubMed  Google Scholar 

  111. Deng JB, Yu DM, Li MS (2006) Formation of the entorhino-hippocampal pathway: a tracing study in vitro and in vivo. Neurosci Bull 22:305–314

    PubMed  Google Scholar 

  112. Deng JB, Yu DM, Wu P et al (2007) The tracing study of developing entorhino-hippocampal pathway. Int J Dev Neurosci 25:251–258

    PubMed  Google Scholar 

  113. Lossi L, Mioletti S, Aimar P, Bruno R, Merighi A (2002) In vivo analysis of cell proliferation and apoptosis in the CNS. In: Merighi A, Carmignoto G (eds) Cellular and molecular methods in neuroscience research. Springer, New York, pp 235–258

    Google Scholar 

  114. Taylor SR, Badurek S, Dileone RJ et al. (2014) GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol

    Google Scholar 

  115. Yavuzoglu A, Schofield BR, Wenstrup JJ (2011) Circuitry underlying spectrotemporal integration in the auditory midbrain. J Neurosci 31:14424–14435

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Catapano LA, Magavi SS, Macklis JD (2008) Neuroanatomical tracing of neuronal projections with Fluoro-Gold. Methods Mol Biol 438:353–359

    CAS  PubMed  Google Scholar 

  117. Rodriguez-Contreras A, Liu XB, DeBello WM (2005) Axodendritic contacts onto calcium/calmodulin-dependent protein kinase type II-expressing neurons in the barn owl auditory space map. J Neurosci 25:5611–5622

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Deller T, Naumann T, Frotscher M (2000) Retrograde and anterograde tracing combined with transmitter identification and electron microscopy. J Neurosci Methods 103:117–126

    CAS  PubMed  Google Scholar 

  119. Ciriello J, Caverson MM, McMurray JC et al (2013) Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience 250:599–613

    CAS  PubMed  Google Scholar 

  120. Zhang Y, Kerman IA, Laque A et al (2011) Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 31:1873–1884

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Rakic P (2002) Neurogenesis in adult primates. Prog Brain Res 138(3–14):3–14

    CAS  PubMed  Google Scholar 

  122. Rakic P (2002) Adult neurogenesis in mammals: an identity crisis. J Neurosci 22:614–618

    PubMed  Google Scholar 

  123. Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71

    CAS  PubMed  Google Scholar 

  124. von Bohlen und HO (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345:1–19

    Google Scholar 

  125. Merighi A, Bardoni R, Salio C et al (2008) Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord. Dev Neurobiol 68:457–475

    CAS  PubMed  Google Scholar 

  126. Pasti L, Volterra A, Pozzan T et al (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    CAS  PubMed  Google Scholar 

  127. Carmignoto G (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    PubMed  Google Scholar 

  128. Crivat G, Taraska JW (2012) Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 30:8–16

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Arai Y, Nagai T (2013) Extensive use of FRET in biological imaging. Microscopy (Oxf) 62:419–428

    CAS  Google Scholar 

  130. Merighi A, Alasia S, Gambino G, Lossi L (2012) Confocal imaging of organotypic brain slices for real time analysis of cell death. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex Research Center, Badajoz, Spain

    Google Scholar 

  131. Hsu YY, Liu YN, Lu WW et al (2009) Visualizing and quantifying the differential cleavages of the eukaryotic translation initiation factors eIF4GI and eIF4GII in the enterovirus-infected cell. Biotechnol Bioeng 104:1142–1152

    CAS  PubMed  Google Scholar 

  132. Chen TW, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    CAS  PubMed  Google Scholar 

  134. Lundby A, Mutoh H, Dimitrov D et al (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3:e2514

    PubMed Central  PubMed  Google Scholar 

  135. Perron A, Mutoh H, Launey T et al (2009) Red-shifted voltage-sensitive fluorescent proteins. Chem Biol 16:1268–1277

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Mancuso JJ, Kim J, Lee S et al (2011) Optogenetic probing of functional brain circuitry. Exp Physiol 96:26–33

    PubMed  Google Scholar 

  137. Packer AM, Roska B, Hausser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16:805–815

    CAS  PubMed  Google Scholar 

  138. Williams SC, Deisseroth K (2013) Optogenetics. Proc Natl Acad Sci U S A 110:16287

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Nicholls SB, Chu J, Abbruzzese G et al (2011) Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. J Biol Chem 286:24977–24986

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Zhang J, Wang X, Cui W et al (2013) Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun 4:2157

    PubMed  Google Scholar 

  141. Muller-Reichert T, Verkade P (2012) Introduction to correlative light and electron microscopy. Methods Cell Biol 111:17–29

    Google Scholar 

  142. Brown E, Mantell J, Carter D et al (2009) Studying intracellular transport using high-pressure freezing and Correlative Light Electron Microscopy. Semin Cell Dev Biol 20:910–919

    CAS  PubMed  Google Scholar 

  143. Verkade P (2008) Moving EM: the Rapid Transfer System as a new tool for correlative light and electron microscopy and high throughput for high-pressure freezing. J Microsc 230:317–328

    CAS  PubMed  Google Scholar 

  144. McDonald KL, Morphew M, Verkade P et al (2007) Recent advances in high-pressure freezing: equipment- and specimen-loading methods. Methods Mol Biol 369:143–173

    CAS  PubMed  Google Scholar 

  145. Jahn KA, Barton DA, Kobayashi K et al (2012) Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43:565–582

    CAS  PubMed  Google Scholar 

  146. Sandell JH, Masland RH (1988) Photoconversion of some fluorescent markers to a diaminobenzidine product. J Comp Neurol 36:555–559

    CAS  Google Scholar 

  147. Bentivoglio M, Su HS (1990) Photoconversion of fluorescent retrograde tracers. Neurosci Lett 113:127

    CAS  PubMed  Google Scholar 

  148. Grabenbauer M (2012) Correlative light and electron microscopy of GFP. Methods Cell Biol 111:117–138

    CAS  PubMed  Google Scholar 

  149. Farkas I, Kallo I, Deli L et al (2010) Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology 151:5818–5829

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Modla S, Czymmek KJ (2011) Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 42:773–792

    CAS  PubMed  Google Scholar 

  151. Miyazaki T, Watanabe M (2011) Development of an anatomical technique for visualizing the mode of climbing fiber innervation in Purkinje cells and its application to mutant mice lacking GluRdelta2 and Ca(v)2.1. Anat Sci Int 86:10–18

    CAS  PubMed  Google Scholar 

  152. Merighi A, Cruz F, Coimbra A (1992) Immunocytochemical staining of neuropeptides in terminal arborization of primary afferent fibers anterogradely labeled and identified at light and electron microscopic levels. J Neurosci Methods 42:105–113

    CAS  PubMed  Google Scholar 

  153. Merighi A, Raviola E, Dacheux RF (1996) Connections of two types of flat cone bipolars in the rabbit retina. J Comp Neurol 371:164–178

    CAS  PubMed  Google Scholar 

  154. Salio C, Lossi L, Ferrini F et al (2005) Ultrastructural evidence for a pre- and post-synaptic localization of full length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci 22:1951–1966

    PubMed  Google Scholar 

  155. Sibarita JB (2005) Deconvolution microscopy. Adv Biochem Eng Biotechnol 95:201–243

    PubMed  Google Scholar 

  156. Turner JN, Szarowski DH, Turner TJ et al (1994) Three-dimensional imaging and image analysis of hippocampal neurons: confocal and digitally enhanced wide field microscopy. Microsc Res Tech 29:269–278

    CAS  PubMed  Google Scholar 

  157. Frost NA, Lu HE, Blanpied TA (2012) Optimization of cell morphology measurement via single-molecule tracking PALM. PLoS One 7:e36751

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Herbert S, Soares H, Zimmer C et al (2012) Single-molecule localization super-resolution microscopy: deeper and faster. Microsc Microanal 18:1419–1429

    CAS  PubMed  Google Scholar 

  159. Lu HE, MacGillavry HD, Frost NA et al (2014) Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J Neurosci 34:7600–7610

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Shrivastava AN, Rodriguez PC, Triller A et al (2013) Dynamic micro-organization of P2X7 receptors revealed by PALM based single particle tracking. Front Cell Neurosci 7:232

    PubMed Central  PubMed  Google Scholar 

  161. Izeddin I, Specht CG, Lelek M et al (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 6:e15611

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Kamiyama D, Huang B (2012) Development in the STORM. Dev Cell 23:1103–1110

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Leung BO, Chou KC (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65:967–980

    CAS  PubMed  Google Scholar 

  164. Verdaasdonk JS, Stephens AD, Haase J et al (2014) Bending the rules: widefield microscopy and the Abbe limit of resolution. J Cell Physiol 229:132–138

    PubMed Central  CAS  PubMed  Google Scholar 

  165. van de Linde S, Loschberger A, Klein T et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    PubMed  Google Scholar 

  166. Andreska T, Aufmkolk S, Sauer M et al (2014) High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. Front Cell Neurosci 8:107

    PubMed Central  PubMed  Google Scholar 

  167. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456

    CAS  PubMed  Google Scholar 

  168. Lakadamyali M, Babcock H, Bates M et al (2012) 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS One 7:e30826

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Dani A, Huang B, Bergan J et al (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68:843–856

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Bortolozzi M, Lelli A, Mammano F (2008) Calcium microdomains at presynaptic active zones of vertebrate hair cells unmasked by stochastic deconvolution. Cell Calcium 44:158–168

    CAS  PubMed  Google Scholar 

  171. Folling J, Bossi M, Bock H et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945

    PubMed  Google Scholar 

  172. Wei L, Min W (2013) What can stimulated emission do for bioimaging? Ann N Y Acad Sci 1293:1–7

    PubMed  Google Scholar 

  173. Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335:551

    CAS  PubMed  Google Scholar 

  174. Blom H, Ronnlund D, Scott L et al (2013) Spatial distribution of DARPP-32 in dendritic spines. PLoS One 8:e75155

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Bethge P, Chereau R, Avignone E et al (2013) Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104:778–785

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104:770–777

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Lv C, Gould TJ, Bewersdorf J et al (2012) High-resolution optical imaging of zebrafish larval ribbon synapse protein RIBEYE, RIM2, and CaV 1.4 by stimulation emission depletion microscopy. Microsc Microanal 18:745–752

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Willig KI, Nagerl UV (2012) Stimulated emission depletion (STED) imaging of dendritic spines in living hippocampal slices. Cold Spring Harb Protoc 2012: db

    Google Scholar 

  179. Martin-Fernandez ML, Tynan CJ, Webb SE (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252:16–22

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Wu Y, Gu Y, Morphew MK et al (2012) All three components of the neuronal SNARE complex contribute to secretory vesicle docking. J Cell Biol 198:323–330

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Silverman MA, Johnson S, Gurkins D et al (2005) Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons. J Neurosci 25:3095–3106

    CAS  PubMed  Google Scholar 

  182. Scalettar BA, Rosa P, Taverna E et al (2002) Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells. J Cell Sci 115:2399–2412

    CAS  PubMed  Google Scholar 

  183. Fiolka R, Shao L, Rego EH et al (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci U S A 109:5311–5315

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Schouten M, De Luca GM, Alatriste Gonzalez DK et al (2014) Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy. J Vis Exp 10

    Google Scholar 

  185. Xu D, Jiang T, Li A et al (2013) Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device. J Biomed Opt 18:060503

    PubMed  Google Scholar 

  186. Dal MM, Difato F, Beltramo R et al (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Lossi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Merighi, A., Lossi, L. (2015). The Evolution of Immunocytochemistry in the Dissection of Neural Complexity. In: Merighi, A., Lossi, L. (eds) Immunocytochemistry and Related Techniques. Neuromethods, vol 101. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2313-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2313-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2312-0

  • Online ISBN: 978-1-4939-2313-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics