Skip to main content

Quantitative Multiplexed Quantum Dot Based In Situ Hybridization in Formalin-Fixed Paraffin-Embedded Tissue

  • Protocol
  • First Online:
In Situ Hybridization Methods

Part of the book series: Neuromethods ((NM,volume 99))

  • 1666 Accesses

Abstract

Gene expression profiling using microarray analysis has expanded our understanding of human cancer and identified gene signatures that can be useful in predicting outcome. However, relatively little of this knowledge has been translated into clinically effective diagnostic tools since microarrays usually require high-quality fresh-frozen samples. In this chapter, a new methodology of multiplexed in situ hybridization (ISH) using a novel combination of quantum dot-labelled oligonucleotide probes (QD-ISH) and spectral imaging data analysis is described. Initially, optimization using a poly d(T) oligonucleotide probe in routinely processed, formalin-fixed and paraffin-embedded (FFPE) bone marrow biopsies is described. Protocols are then detailed for single and multiplex hybridization FFPE samples, illustrated by application to samples from patients with acute leukemia and follicular lymphoma using oligonucleotide probes for myeloperoxidase, bcl-2, survivin, and XIAP. Spectral imaging is used for post-hybridization image analysis, enabling separation of spatially co-localized signals. Details of application to multiplex ISH in routinely processed archival bone marrow biopsies are the described, specifically in tissue-microarrays to enable high throughput analysis and use of a standard for signal quantitation is detailed. The method enables use of standardized, quantitative multiplex QD-ISH for identification of prognostic markers in FFPE samples, and as such is generally applicable in translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ebert BL, Golub TR (2004) Genomic approaches to hematologic malignancies. Blood 104:923–932

    Article  CAS  PubMed  Google Scholar 

  2. Wilcox JN (1993) Fundamental principles of in situ hybridization. J Histochem Cytochem 41:1725–1733

    Article  CAS  PubMed  Google Scholar 

  3. Kind CN (2000) The application of in-situ hybridisation and immuno-cytochemistry to problem resolution in drug development. Toxicol Lett 112–113:487–492

    Article  PubMed  Google Scholar 

  4. Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland JA, Byers RJ (2008) Quantum dots light up pathology. J Pathol 216:275–285

    Article  CAS  PubMed  Google Scholar 

  5. Pathak S, Choi SK, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104

    Article  CAS  PubMed  Google Scholar 

  6. Xiao Y, Barker PE (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res 32:e28

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bentolila LA, Weiss S (2006) Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem Biophys 45:59–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ma L, Wu SM, Huang J, Ding Y, Pang DW, Li L (2008) Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma 117:181–187

    Article  CAS  PubMed  Google Scholar 

  9. Wu SM, Zhao X, Zhang ZL, Xie HY, Tian ZQ, Peng J, Lu ZX, Pang DW, Xie ZX (2006) Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. Chemphyschem 7:1062–1067

    Article  CAS  PubMed  Google Scholar 

  10. Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY (2005) Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J Histochem Cytochem 53:833–838

    Article  CAS  PubMed  Google Scholar 

  11. Chan P, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 33:e161

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tholouli E, Hoyland JA, Di Vizio D, O’Connell F, Macdermott SA, Twomey D, Levenson R, Yin JA, Golub TR, Loda M, Byers R (2006) Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem Biophys Res Commun 348:628–636

    Article  CAS  PubMed  Google Scholar 

  13. Byers RJ, Di Vizio D, O'Connell F, Tholouli E, Levenson RM, Gossage K, Twomey D, Yang Y, Benedettini E, Rose J, Ligon KL, Finn SP, Golub TR, Loda M (2007) Semiautomated multiplexed quantum dot-based in situ hybridization and spectral deconvolution. J Mol Diagn 9:20–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Matsuno A, Mizutani A, Takekoshi S, Itoh J, Okinaga H, Nishina Y, Takano K, Nagashima T, Osamura RY, Teramoto A (2006) Analyses of the mechanism of intracellular transport and secretion of pituitary hormone, with an insight of the subcellular localization of pituitary hormone and its mRNA. Brain Tumor Pathol 23:1–5

    Article  CAS  PubMed  Google Scholar 

  15. Choi Y, Kim HP, Hong SM, Ryu JY, Han SJ, Song R (2009) In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates. Small 5:2085–2091

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Z, Li R, Todd NW, Stass SA, Jiang F (2007) Detecting genomic aberrations by fluorescence in situ hybridization with quantum dots-labeled probes. J Nanosci Nanotechnol 7:4254–4259

    Article  CAS  PubMed  Google Scholar 

  17. Knoll JH (2007) Human metaphase chromosome FISH using quantum dot conjugates. Methods Mol Biol 374:55–66

    CAS  PubMed  Google Scholar 

  18. Chen HL, Peng J, Zhu XB, Gao J, Xue JL, Wang MW, Xia HS (2010) Detection of EBV in nasopharyngeal carcinoma by quantum dot fluorescent in situ hybridization. Exp Mol Pathol 89:367–371

    Article  CAS  PubMed  Google Scholar 

  19. Peng J, Chen HL, Zhu XB, Yang GF, Zhang ZL, Tian ZQ, Pang DW (2011) Detection of Epstein-Barr virus infection in gastric carcinomas using quantum dot-based fluorescence in-situ hybridization. J Nanosci Nanotechnol 11:9725–9730

    Article  CAS  PubMed  Google Scholar 

  20. Ioannou A, Eleftheriou I, Lubatti A, Charalambous A, Skourides PA (2012) High-resolution whole-mount in situ hybridization using Quantum Dot nanocrystals. J Biomed Biotechnol; ID 627602. doi:10.1155/2012/627602

  21. Tholouli E, Macdermott S, Hoyland J, Yin JL, Byers R (2012) Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia. Biochem Biophys Res Commun 425:333–339

    Article  CAS  PubMed  Google Scholar 

  22. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  PubMed  Google Scholar 

  23. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  24. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  25. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  CAS  PubMed  Google Scholar 

  26. Farkas DL, Du C, Fisher GW, Lau C, Niu W, Wachman ES, Levenson RM (1998) Non-invasive image acquisition and advanced processing in optical bioimaging. Comput Med Imaging Graph 22:89–102

    Article  CAS  PubMed  Google Scholar 

  27. Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10:ID 41207. doi:10.1117/1.2032458

  28. Levenson RM, Mansfield JR (2006) Multispectral imaging in biology and medicine: slices of life. Cytometry A 69:748–758

    Article  PubMed  Google Scholar 

  29. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  PubMed  Google Scholar 

  30. Jubb S, Landon TH, Burwick J, Pham TQ, Frantz GD, Cairns B, Quirke P, Peale FV, Hillan KJ (2003) Quantitative analysis of colorectal tissue microarrays by immunofluorescence and in situ hybridization. J Pathol 200:577–588

    Article  CAS  PubMed  Google Scholar 

  31. Grubor B, Ramirez-Romero R, Gallup JM, Bailey TB, Ackermann MR (2004) Distribution of substance P receptor (neurokinin-1 receptor) in normal ovine lung and during the progression of bronchopneumonia in sheep. J Histochem Cytochem 52:123–130

    Article  CAS  PubMed  Google Scholar 

  32. Yoshioka T, Kobayashi C, Suda H, Sasaki T (1996) Correction of background noise in direct digital dental radiography. Dentomaxillofac Radiol 25:256–262

    Article  CAS  PubMed  Google Scholar 

  33. Chassoux D, Franchi J, Cao TT, Debey P (1999) DNA content by in situ fluorescence imaging and S-phase detection, with chromatin structure preserved. Anal Quant Cytol Histol 21:489–497

    CAS  PubMed  Google Scholar 

  34. Ringkob TP, Swartz DR, Greaser ML (2004) Light microscopy and image analysis of thin filament lengths utilizing dual probes on beef, chicken, and rabbit myofibrils. J Anim Sci 82:1445–1453

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Byers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tholouli, E., Hoyland, J.A., Byers, R.J. (2015). Quantitative Multiplexed Quantum Dot Based In Situ Hybridization in Formalin-Fixed Paraffin-Embedded Tissue. In: Hauptmann, G. (eds) In Situ Hybridization Methods. Neuromethods, vol 99. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2303-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2303-8_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2302-1

  • Online ISBN: 978-1-4939-2303-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics