Skip to main content

The Hippocampal Endocannabinoid System in Different Memory Phases: Unveiling the CA1 Circuitry

  • Chapter
  • First Online:
Cannabinoid Modulation of Emotion, Memory, and Motivation

Abstract

CB1 Cannabinoid receptors are widely expressed throughout the brain, particularly in areas involved in learning and memory, such as the hippocampus. In the CA1 area, they are mainly present at the presynaptic terminals of both GABAergic and glutamatergic neurons. The antagonist/inverse agonist AM251 is a useful pharmacological tool due to its selectivity and ability to tap into the endocannabinoid system (ECS). When infused into the brain, it interferes with the natural functioning of the local pool of endocannabinoids present in each memory phase, and by suppressing the natural course of events, exposes its function in each situation. Anandamide (AEA) was also studied, but results were less consistent. In a large set of experiments spanning several years we have shown that different memory phases are modulated in opposite, complementary ways: AM251 was amnestic (and AEA, facilitatory) when infused into CA1 both after training (consolidation) or after a long reactivation session (extinction), suggesting that ECS modulates positively these phases. On the other hand, AM251 facilitated (and AEA frequently disrupted) memory before test (retrieval) or after a short reactivation session (reconsolidation), suggesting a negative modulatory role. Thus, simmetrically opposed actions are the rule for the ECS in the CA1 area, suggesting both plastic events and complex selective roles taking place under its control, e.g. “switching” between extinction and reconsolidation. Results were interpreted according to known CA1 circuitry and the most probable position of cannabinoid CB1 receptors, pointing to a complex, multifunctional modulatory system that is perfectly consistent with its ubiquity in mammal brains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AM251, is an inverse agonist [126129], however, since it also acts as a competitive antagonist displacing endocannabinoids at CB1 receptors and because it is not possible to discriminate between both effects in vivo [130], we prefer to classify AM251 as some authors already do, calling it an “antagonist/ inverse agonist”.

References

  1. Russo EB. History of cannabis and its preparations in saga, science, and sobriquet. Chem Biodivers. 2007;4(8):1614–48.

    Article  CAS  PubMed  Google Scholar 

  2. Riedel G, Davies SN. Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol. 2005;(168):445–77.

    Google Scholar 

  3. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11(2):563–83.

    CAS  PubMed  Google Scholar 

  4. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  6. Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat. 2000;61(1–2):3–18.

    Article  CAS  PubMed  Google Scholar 

  7. Han J-H, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA. Neuronal competition and selection during memory formation. Science. 2007;316(5823):457–60.

    Article  CAS  PubMed  Google Scholar 

  8. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418(6897):530–4.

    Article  CAS  PubMed  Google Scholar 

  10. Marsicano G, Kuner R. Anatomical distribution of receptors, ligands and enzymes in the brain and in the spinal cord. Circuitries and neurochemistry. Cannabinoids and the Brain. New York: Springer; 2008.

    Google Scholar 

  11. Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci. 1999;19(11):4544–58.

    CAS  PubMed  Google Scholar 

  12. Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci. 2006;26(11):2991–3001.

    Article  CAS  PubMed  Google Scholar 

  13. Hájos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci. 2000;12(9):3239–49.

    Article  PubMed  Google Scholar 

  14. McGaugh JL. Time-dependent processes in memory storage. Science. 1966;153(3742):1351–8.

    Article  CAS  PubMed  Google Scholar 

  15. McGaugh JL. Memory-a century of consolidation. Science. 2000;287(5451):248–51.

    Article  CAS  PubMed  Google Scholar 

  16. Müller G, Pilzecker A. Experimentelle Beitraege zur Lehre vom Gedaechtnis. Z Psychol. 1900.

    Google Scholar 

  17. Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 2006;29(9):496–505.

    Article  CAS  PubMed  Google Scholar 

  18. Dudai Y, Morris R. To consolidate or not to consolidate: what are the questions? Brain, perception, memory advances in cognitive sciences. Oxford: Oxford University Press; 2000.

    Google Scholar 

  19. Squire LR, Stark CEL, Clark RE. The medial temporal lobe. Annu Rev Neurosci 2004;27:279–306.

    Article  CAS  PubMed  Google Scholar 

  20. McIntyre CK, McGaugh JL, Williams CL. Interacting brain systems modulate memory consolidation. Neurosci Biobehav Rev. 2012;36(7):1750–62.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256(5057):675–7.

    Article  CAS  PubMed  Google Scholar 

  22. Quillfeldt JA, Zanatta MS, Schmitz PK, Quevedo J, Schaeffer E, Lima JB, Medina JH, Izquierdo I. Different brain areas are involved in memory expression at different times from training. Neurobiol Learn Mem. 1996;66(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  23. Szapiro G, Galante JM, Barros DM, Levi de Stein M, Vianna MRM, Izquierdo LA, Izquierdo I, Medina JH. Molecular mechanisms of memory retrieval. Neurochem Res. 2002; 27(11):1491–8.

    Article  CAS  PubMed  Google Scholar 

  24. Quillfeldt JA. Behavioral methods to study learning and memory in rats. Animal models as tools in ethical biomedical research. São Paulo: Associação Fundo de Incentivo à Psicofarmacologia; 2010. p. 227–69.

    Google Scholar 

  25. Bouton ME. Context and behavioral processes in extinction. Learn Mem. 2004;11(5):485–94.

    Article  PubMed  Google Scholar 

  26. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406(6797):722–6.

    Article  CAS  PubMed  Google Scholar 

  27. De Oliveira Alvares L, Engelke DS, Diehl F, Scheffer-Teixeira R, Haubrich J, de Freitas Cassini L, Molina VA, Quillfeldt JA. Stress response recruits the hippocampal endocannabinoid system for the modulation of fear memory. Learn Mem. 2010;17(4):202–9.

    Article  PubMed  CAS  Google Scholar 

  28. Atsak P, Hauer D, Campolongo P, Schelling G, McGaugh JL, Roozendaal B. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory. Proc Natl Acad Sci U S A. 2012;109(9):3504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castellano C, Cabib S, Palmisano A, Di Marzo V, Puglisi-Allegra S. The effects of anandamide on memory consolidation in mice involve both D1 and D2 dopamine receptors. Behav Pharmacol. 1997;8(8):707–12.

    Article  CAS  PubMed  Google Scholar 

  30. Abush H, Akirav I. Cannabinoids modulate hippocampal memory and plasticity. Hippocampus. 2010;20(10):1126–38.

    Article  CAS  PubMed  Google Scholar 

  31. Pamplona FA, Takahashi RN. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci Lett. 2006;397(1–2):88–92.

    Article  CAS  PubMed  Google Scholar 

  32. Lichtman AH, Dimen KR, Martin BR. Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology (Berl). 1995;119(3):282–90.

    Article  CAS  Google Scholar 

  33. Collins DR, Pertwee RG, Davies SN. Prevention by the cannabinoid antagonist, SR141716A, of cannabinoid-mediated blockade of long-term potentiation in the rat hippocampal slice. Br J Pharmacol. 1995;115(6):869–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davies SN, Pertwee RG, Riedel G. Functions of cannabinoid receptors in the hippocampus. Neuropharmacology. 2002;42(8):993–1007.

    Article  CAS  PubMed  Google Scholar 

  35. Terranova JP, Michaud JC, Le Fur G, Soubrié P. Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55212-2: reversal by SR141716 A, a selective antagonist of CB1 cannabinoid receptors. Naunyn Schmiedebergs Arch Pharmacol. 1995;352(5):576–9.

    Article  CAS  PubMed  Google Scholar 

  36. De Oliveira Alvares L, de Oliveira LF, Camboim C, Diehl F, Genro BP, Lanziotti VB, Quillfeldt JA. Amnestic effect of intrahippocampal AM251, a CB1-selective blocker, in the inhibitory avoidance, but not in the open field habituation task, in rats. Neurobiol Learn Mem. 2005;83(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  37. De Oliveira Alvares L, Genro BP, Diehl F, Quillfeldt JA. Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. Neurobiol Learn Mem. 2008;90(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  38. Breivogel CS, Griffin G, Di Marzo V, Martin BR. Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol. 2001;60(1):155–63.

    CAS  PubMed  Google Scholar 

  39. Hájos N, Ledent C, Freund TF. Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience. 2001;106(1):1–4.

    Article  PubMed  Google Scholar 

  40. Hájos N, Freund TF. Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers. Neuropharmacology. 2002;43(4):503–10.

    Article  PubMed  Google Scholar 

  41. De Oliveira Alvares L, Genro BP, Vaz Breda R, Pedroso MF, Da Costa JC, Quillfeldt JA. AM251, a selective antagonist of the CB1 receptor, inhibits the induction of long-term potentiation and induces retrograde amnesia in rats. Brain Res. 2006;1075(1):60–7.

    Article  PubMed  CAS  Google Scholar 

  42. Ross RA, Gibson TM, Brockie HC, Leslie M, Pashmi G, Craib SJ, Di Marzo V, Pertwee RG. Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol. 2001

    Google Scholar 

  43. Di Marzo V Bisogno T De Petrocellis L. Anandamide: some like it hot. Trends Pharmacol Sci. 2001;22(7):346–9.

    Article  CAS  PubMed  Google Scholar 

  44. Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem. 1998;70(2):671–6.

    Article  CAS  PubMed  Google Scholar 

  45. Christopoulos A, Wilson K. Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. Brain Res. 2001;915(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  46. Sancho R, Calzado MA, Di Marzo V, Appendino G, Muñoz E. Anandamide inhibits nuclear factor-kappaB activation through a cannabinoid receptor-independent pathway. Mol Pharmacol. 2003;63(2):429–38.

    Article  CAS  PubMed  Google Scholar 

  47. Pearlman RJ, Aubrey KR, Vandenberg RJ. Arachidonic acid and anandamide have opposite modulatory actions at the glycine transporter, GLYT1a. J Neurochem. 2003;84(3):592–601.

    Article  CAS  PubMed  Google Scholar 

  48. Barros DM, Carlis V, Maidana M, Silva ES, Baisch ALM, Ramirez MR, Izquierdo I. Interactions between anandamide-induced anterograde amnesia and post-training memory modulatory systems. Brain Res. 2004;1016(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  49. Varvel SA, Cravatt BF, Engram AE, Lichtman AH. Fatty acid amide hydrolase (-/-) mice exhibit an increased sensitivity to the disruptive effects of anandamide or oleamide in a working memory water maze task. J Pharmacol Exp Ther. 2006;317(1):251–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435(7045):1108–12.

    Article  CAS  PubMed  Google Scholar 

  51. Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol. 1999;58(4):315–48.

    Article  CAS  PubMed  Google Scholar 

  52. Hernández-Tristán R, Arévalo C, Canals S, Leret ML. The effects of acute treatment with delta9-THC on exploratory behaviour and memory in the rat. J Physiol Biochem. 2000;56(1):17–24.

    Article  PubMed  Google Scholar 

  53. Lichtman AH. SR 141716A enhances spatial memory as assessed in a radial-arm maze task in rats. Eur J Pharmacol. 2000;404(1–2):175–9.

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi RN, Pamplona FA, Fernandes MS. The cannabinoid antagonist SR141716A facilitates memory acquisition and consolidation in the mouse elevated T-maze. Neurosci Lett. 2005;380(3):270–5.

    Article  CAS  PubMed  Google Scholar 

  55. Terranova JP, Storme JJ, Lafon N, Péŕio A, Rinaldi-Carmona M, Le Fur G, Soubrié P. Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141716. Psychopharmacology (Berl). 1996;126(2):165–72.

    Article  CAS  Google Scholar 

  56. Wolff MC, Leander JD. SR141716A, a cannabinoid CB1 receptor antagonist, improves memory in a delayed radial maze task. Eur J Pharmacol. 2003;477(3):213–7.

    Article  CAS  PubMed  Google Scholar 

  57. Da Silva GE, Takahashi RN. SR 141716A prevents delta9-tetrahydrocannabinol-induced spatial learning deficit in a Morris-type water maze in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(2):321–5.

    Article  PubMed  Google Scholar 

  58. Xu J-Y, Chen C. Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist. 2014.

    Google Scholar 

  59. Andersen P, Blackstad TW, Lömo T. Location and identification of excitatory synapses on hippocampal pyramidal cells. Exp Brain Res. 1966;1(3):236–48.

    Article  CAS  PubMed  Google Scholar 

  60. Witter MP, Canto CB, Couey JJ, Koganezawa N, O’Reilly KC. Architecture of spatial circuits in the hippocampal region. Philos Trans R Soc Lond B Biol Sci. 2014;369(1635):20120515.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Okuda S, Roozendaal B, McGaugh JL. Glucocorticoid effects on object recognition memory require training-associated emotional arousal. Proc Natl Acad Sci U S A. 2004.

    Google Scholar 

  62. Kreitzer AC, Regehr WG. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron. 2001;29(3):717–27.

    Article  CAS  PubMed  Google Scholar 

  63. Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron. 2001;29(3):729–38.

    Article  CAS  PubMed  Google Scholar 

  64. Wilson RI, Nicoll RA. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature. 2001;410(6828):588–92.

    Article  CAS  PubMed  Google Scholar 

  65. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002;296(5568):678–82.

    Article  CAS  PubMed  Google Scholar 

  66. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9.

    Article  CAS  PubMed  Google Scholar 

  67. Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6(2):119–30.

    Article  CAS  PubMed  Google Scholar 

  68. Izquierdo I, Medina JH. Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol Learn Mem. 1995;63(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  69. Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci. 2004;5(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  70. Carlson G, Wang Y, Alger BE. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat Neurosci. 2002;5(8):723–4.

    CAS  PubMed  Google Scholar 

  71. De Oliveira Alvares L, Pasqualini Genro B, Diehl F, Molina VA, Quillfeldt JA. Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience. 2008;154(4):1648–55.

    Article  CAS  PubMed  Google Scholar 

  72. Kamprath K. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci. 2006;26(25):6677–86.

    Article  CAS  PubMed  Google Scholar 

  73. Jacob W, Yassouridis A, Marsicano G, Monory K, Lutz B, Wotjak CT. Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission. Genes Brain Behav. 2009;8(7):685–98.

    Article  CAS  PubMed  Google Scholar 

  74. Hölter SM, Kallnik M, Wurst W, Marsicano G, Lutz B, Wotjak CT. Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. Eur J Pharmacol. 2005;510(1–2):69–74.

    Article  PubMed  CAS  Google Scholar 

  75. Niyuhire F, Varvel SA, Thorpe AJ, Stokes RJ, Wiley JL, Lichtman AH. The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology (Berl). 2007;191(2):223–31.

    Article  CAS  Google Scholar 

  76. Roozendaal B, McGaugh JL. Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol Learn Mem. 1996;65(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  77. De Quervain DJ, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature. 1998;394(6695):787–90.

    Article  CAS  PubMed  Google Scholar 

  78. Roozendaal B, Nguyen BT, Power AE, McGaugh JL. Basolateral amygdala noradrenergic influence enables enhancement of memory consolidation induced by hippocampal glucocorticoid receptor activation. Proc Natl Acad Sci U S A. 1999;96(20):11642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roozendaal B. Systems mediating acute glucocorticoid effects on memory consolidation and retrieval. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(8):1213–23.

    Article  CAS  PubMed  Google Scholar 

  80. Kamprath K, Plendl W, Marsicano G, Deussing JM, Wurst W, Lutz B, Wotjak CT. Endocannabinoids mediate acute fear adaptation via glutamatergic neurons independently of corticotropin-releasing hormone signaling. Genes Brain Behav. 2009;8(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  81. Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23(12):4850–7.

    CAS  PubMed  Google Scholar 

  82. Di S, Malcher-Lopes R, Marcheselli VL, Bazan NG, Tasker JG. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology. 2005;146(10):4292–301.

    Article  CAS  PubMed  Google Scholar 

  83. Stahn C, Löwenberg M, Hommes DW, Buttgereit F. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol. 2007;275(1–2):71–8.

    Article  CAS  PubMed  Google Scholar 

  84. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci U S A. 2009;106(12):4888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ganon-Elazar E, Akirav I. Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J Neurosci. 2009;29(36):11078–88.

    Article  CAS  PubMed  Google Scholar 

  86. Hill MN, McEwen BS. Endocannabinoids: the silent partner of glucocorticoids in the synapse. Proc Natl Acad Sci U S A. 2009;106(12):4579–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Akirav I, Sandi C, Richter-Levin G. Differential activation of hippocampus and amygdala following spatial learning under stress. Eur J Neurosci. 2001;14(4):719–25.

    Article  CAS  PubMed  Google Scholar 

  88. Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453–62.

    CAS  PubMed  Google Scholar 

  89. Akirav I, Richter-Levin G. Factors that determine the non-linear amygdala influence on hippocampus-dependent memory. Dose Response. 2006;4(1):22–37.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Izquierdo I, Dias RD. Endogenous state-dependency-memory regulation by post-training and pre-testing administration of ACTH, beta-endorphin, adrenaline and tyramine. Braz J Med Biol Res. 1983;16(1):55–64.

    CAS  PubMed  Google Scholar 

  91. De Almeida MA Izquierdo I. Effect of the intraperitoneal and intracerebroventricular administration of ACTH, epinephrine, or beta-endorphin on retrieval of an inhibitory avoidance task in rats. Behav Neural Biol. 1984;40(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  92. Diehl F, Fürstenau de Oliveira L, Sánchez G, Camboim C, de Oliveira Alvares L, Lanziotti VB, Cerveñansky C, Kornisiuk E, Jerusalinky D, Quillfeldt JA. Facilitatory effect of the intra-hippocampal pre-test administration of MT3 in the inhibitory avoidance task. Behav Brain Res. 2007;177(2):227–31.

    Article  CAS  PubMed  Google Scholar 

  93. Rossato JI, Bonini JS, Coitinho AS, Vianna MRM, Medina JH, Cammarota M, Izquierdo I. Retrograde amnesia induced by drugs acting on different molecular systems. Behav Neurosci. 2004;118(3):563–8.

    Article  CAS  PubMed  Google Scholar 

  94. De Oliveira Alvares L Einarsson EÖ Santana F Crestani AP Haubrich J Cassini LF Nader K Quillfeldt JA. Periodically reactivated context memory retains its precision and dependence on the hippocampus. Hippocampus. 2012;22(5):1092–5.

    Article  Google Scholar 

  95. Martí Barros D Ramirez MR Dos Reis EA Izquierdo I. Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience. 2004;126(3):651–6.

    Article  PubMed  CAS  Google Scholar 

  96. Izquierdo I, da Cunha C, Rosat R, Jerusalinsky D, Ferreira MB, Medina JH. Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behav Neural Biol. 1992;58(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  97. Barros DM, Mello e Souza T, De David T, Choi H, Aguzzoli A, Madche C, Ardenghi P, Medina JH, Izquierdo I. Simultaneous modulation of retrieval by dopaminergic D(1), beta-noradrenergic, serotonergic-1A and cholinergic muscarinic receptors in cortical structures of the rat. Behav Brain Res. 2001;124(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  98. Bevilaqua L, Ardenghi P, Schröder N, Bromberg E, Schmitz PK, Schaeffer E, Quevedo J, Bianchin M, Walz R, Medina JH, Izquierdo I. Drugs acting upon the cyclic adenosine monophosphate/protein kinase A signalling pathway modulate memory consolidation when given late after training into rat hippocampus but not amygdala. Behav Pharmacol. 1997;8(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  99. Cammarota M, Bevilaqua LRM, Medina JH, Izquierdo I. Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn Mem. 2004;11(5):572–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ferreira AR, Fürstenau L, Blanco C, Kornisiuk E, Sánchez G, Daroit D, Castro e Silva M, Cerveñansky C, Jerusalinsky D, Quillfeldt JA. Role of hippocampal M1 and M4 muscarinic receptor subtypes in memory consolidation in the rat. Pharmacol Biochem Behav. 2003;74(2):411–5.

    Article  PubMed  Google Scholar 

  101. Jerusalinsky D, Kornisiuk E, Alfaro P, Quillfeldt J, Alonso M, Verde ER, Cerveñansky C, Harvey A. Muscarinic toxin selective for m4 receptors impairs memory in the rat. Neuroreport. 1998;9(7):1407–11.

    Article  CAS  PubMed  Google Scholar 

  102. Atsak P, Roozendaal B, Campolongo P. Role of the endocannabinoid system in regulating glucocorticoid effects on memory for emotional experiences. Neuroscience. 2012;204:104–16.

    Article  CAS  PubMed  Google Scholar 

  103. Pavlov I. Conditioned Reflexes. London: Oxford University. Press; 1927.

    Google Scholar 

  104. Myers KM, Davis M. Systems-level reconsolidation: reengagement of the hippocampus with memory reactivation. Neuron. 2002;36(3):340–3.

    Article  CAS  PubMed  Google Scholar 

  105. Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry. 2007;12(2):120–50.

    Article  CAS  PubMed  Google Scholar 

  106. Duvarci S, Mamou C Ben, Nader K. Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. Eur J Neurosci. 2006;24(1):249–60.

    Article  PubMed  Google Scholar 

  107. Lin H-C, Mao S-C, Gean P-W. Effects of intra-amygdala infusion of CB1 receptor agonists on the reconsolidation of fear-potentiated startle. Learn Mem. 2006;13(3):316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Santini E, Muller RU, Quirk GJ. Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. J Neurosci. 2001;21(22):9009–17.

    CAS  PubMed  Google Scholar 

  109. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology. 2005;30(3):516–24.

    Article  CAS  PubMed  Google Scholar 

  110. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci. 2004;24(20):4787–95.

    Article  CAS  PubMed  Google Scholar 

  111. Kobilo T, Hazvi S, Dudai Y. Role of cortical cannabinoid CB1 receptor in conditioned taste aversion memory. Eur J Neurosci. 2007;25(11):3417–21.

    Article  PubMed  Google Scholar 

  112. De Oliveira Alvares L, Crestani AP, Cassini LF, Haubrich J, Santana F, Quillfeldt JA. Reactivation enables memory updating, precision-keeping and strengthening: exploring the possible biological roles of reconsolidation. Neuroscience. 2013;244:42–8.

    Article  CAS  PubMed  Google Scholar 

  113. Igaz LM, Vianna MRM, Medina JH, Izquierdo I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci. 2002;22(15):6781–9.

    CAS  PubMed  Google Scholar 

  114. Suzuki A, Mukawa T, Tsukagoshi A, Frankland PW, Kida S. Activation of LVGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. Learn Mem. 2008;15(6):426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stern CAJ, Gazarini L, Takahashi RN, Guimarães FS, Bertoglio LJ. On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology. 2012;37(9):2132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. De Carvalho CR, Pamplona FA, Cruz JS, Takahashi RN. Erratum to: Endocannabinoids underlie reconsolidation of hedonic memories in Wistar rats. Psychopharmacology (Berl). 2014;231(7):1427.

    Article  CAS  Google Scholar 

  117. Boccia MM, Acosta GB, Blake MG, Baratti CM. Memory consolidation and reconsolidation of an inhibitory avoidance response in mice: effects of i.c.v. injections of hemicholinium-3. Neuroscience. 2004;124(4):735–41.

    Article  CAS  PubMed  Google Scholar 

  118. Pedreira ME, Maldonado H. Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron. 2003;38(6):863–9.

    Article  CAS  PubMed  Google Scholar 

  119. Tronson NC, Taylor JR. Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci. 2007;8(4):262–75.

    Article  CAS  PubMed  Google Scholar 

  120. Lee JLC, Milton AL, Everitt BJ. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci. 2006;26(39):10051–6.

    Article  CAS  PubMed  Google Scholar 

  121. Genro BP, de Oliveira Alvares L, Quillfeldt JA. Role of TRPV1 in consolidation of fear memories depends on the averseness of the conditioning procedure. Neurobiol Learn Mem. 2012;97(4):355–60.

    Article  PubMed  Google Scholar 

  122. Takahashi KA, Castillo PE. The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus. Neuroscience. 2006;139(3):795–802.

    Article  CAS  PubMed  Google Scholar 

  123. Domenici MR, Azad SC, Marsicano G, Schierloh A, Wotjak CT, Dodt HU, Zieglgänsberger W, Lutz B, Rammes G. Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci. 2006;26(21):5794–9.

    Article  CAS  PubMed  Google Scholar 

  124. Flavell CR, Barber DJ, Lee JLC. Behavioural memory reconsolidation of food and fear memories. Nat Commun. 2011;2:504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Lee JLC. Memory reconsolidation mediates the updating of hippocampal memory content. Front Behav Neurosci. 2010;4:168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A. 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol. 1996;307(3):331–8.

    Article  CAS  PubMed  Google Scholar 

  127. Landsman RS, Burkey TH, Consroe P, Roeske WR, Yamamura HI. SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. Eur J Pharmacol. 1997;334(1):R1–2.

    Article  CAS  PubMed  Google Scholar 

  128. Savinainen JR, Saario SM, Niemi R, Järvinen T, Laitinen JT. An optimized approach to study endocannabinoid signaling: evidence against constitutive activity of rat brain adenosine A1 and cannabinoid CB1 receptors. Br J Pharmacol. 2003;140(8):1451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pertwee RG. Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci. 2005;76(12):1307–24.

    Article  CAS  PubMed  Google Scholar 

  130. Storr MA, Bashashati M, Hirota C, Vemuri VK, Keenan CM, Duncan M, Lutz B, Mackie K, Makriyannis A, Macnaughton WK, Sharkey KA. Differential effects of CB(1) neutral antagonists and inverse agonists on gastrointestinal motility in mice. Neurogastroenterol Motil. 2010;22(7):787–96, e223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JAQ and LOA would like to acknowledge the great contribution made, in particular, by Carla Dalmaz and Sidia C. Jacques, and co-authors Jaderson C da Costa (PUCRS), and Victor A. Molina (UNC, Argentina). Other collaborators over the years include Lucas Fürstenau de Oliveira, Clarissa Camboim, Felipe Diehl, Bruna P. Genro, Vanusa B. Lanziotti, Ricardo V. Breda (PUCRS), Michele F. Pedroso (PUCRS) Douglas S. Engelke, Robson Scheffer-Teixeira, Josué Haubrich, and Lindsey F. Cassini. We have also had the valuable assistance of Mariane Castro da Silva, Marco Alexandre S. da Silva, Ney T. Ferreira Jr, Fabrício H. M. do Monte (UFSC), Andréa A. Tavares, Thiago P. Henriques, and Fabrício Pamplona (UFSC), and the professional and kind technical assistance of Ms. Zelma Regina de Almeida. Over the years, this research received the support of grants and fellowships from several national and international, specially: CAPES (MEC), CNPq & FINEP (MCTI), FAPERGS, PROPESQ/UFRGS, PRPID/PUCRS, SECyT & FONCyT (Argentina) and IFS (Sweden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alberto Quillfeldt PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quillfeldt, J., de Oliveira Alvares, L. (2015). The Hippocampal Endocannabinoid System in Different Memory Phases: Unveiling the CA1 Circuitry. In: Campolongo, P., Fattore, L. (eds) Cannabinoid Modulation of Emotion, Memory, and Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2294-9_3

Download citation

Publish with us

Policies and ethics