Skip to main content

Cannabinoids Modulation of Emotional and Non-Emotional Memory Processes After Stress

  • Chapter
  • First Online:
Cannabinoid Modulation of Emotion, Memory, and Motivation

Abstract

The endocannabinoid system (ECS) is involved in regulating the stress response and subsequent changes in neuroendocrine function and emotional behavior. It is also a critical neuromodulatory system that affects learning and memory. Generally systemically administered cannabinoid agonists have an impairing effect on memory processes although enhancing effects are also reported.

Stress is a potent modulator of brain function and cognition that has differential effects on memory function depending on a number of factors (such as stress duration, stress intensity, timing and the source of the stress, as well as the learning type under study). Most of the tasks to investigate learning and memory in laboratory rodents are stressful for the animals (i.e. the cognitive task includes intrinsic stress) as opposed to extrinsic stress which refers to outside stress that occurs before or after the cognitive task. Several lines of evidence suggest that cannabinoids differentially affect different memory phases (acquisition, consolidation, retrieval and extinction), and that the type of cognitive task (emotional or aversive versus non-emotional) also determines the neural substrates underlying the effects of cannabinoids on memory.

In this chapter I will describe the interaction between the effects of activating the ECS and stress exposure on emotional (i.e., aversive) and non-emotional learning and memory processes in animal models. I will argue that administering cannabinoid agonists in proximity to extrinsic stress exposure normalizes stress modulation of emotional memory. A possible model of the effects of cannabinoids on emotional memory after stress is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtman AH, Varvel SA, Martin BR. Endocannabinoids in cognition and dependence. Prostaglandins Leukot Essent Fatty Acids. 2002;66(2–3):269–85.

    Article  CAS  PubMed  Google Scholar 

  2. Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci. 2009;12(9):1152–8.

    Article  CAS  PubMed  Google Scholar 

  3. Riedel G, Davies SN. Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol. 2005;168:445–77.

    Article  CAS  PubMed  Google Scholar 

  4. Varvel SA, Lichtman AH. Evaluation of CB1 receptor knockout mice in the Morris water maze. J Pharmacol Exp Ther. 2002;301(3):915–24.

    Article  CAS  PubMed  Google Scholar 

  5. Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S. Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci. 2011;5:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolla KI, Brown K, Eldreth D, Tate K, Cadet JL. Dose-related neurocognitive effects of marijuana use. Neurology. 2002;59(9):1337–43.

    Article  CAS  PubMed  Google Scholar 

  7. Castellano C, Rossi-Arnaud C, Cestari V, Costanzi M. Cannabinoids and memory: animal studies. Curr Drug Targets CNS Neurol Disord. 2003;2(6):389–402.

    Article  CAS  PubMed  Google Scholar 

  8. Solowij N, Battisti R. The chronic effects of cannabis on memory in humans: a review. Curr Drug Abuse Rev. 2008;1(1):81–98.

    Article  PubMed  Google Scholar 

  9. Crean RD, Crane NA, Mason BJ. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J Addict Med. 2011;5(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M, et al. Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA. 2002;287(9):1123–31.

    Article  PubMed  Google Scholar 

  11. Puighermanal E, Busquets-Garcia A, Maldonado R, Ozaita A. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. Philos Trans R Soc Lond B Biol Sci. 2012;367(1607):3254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Oliveira Alvares L Genro BP Diehl F Quillfeldt JA. Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. Neurobiol Learn Mem. 2008;90(1):1–9.

    Article  CAS  Google Scholar 

  13. Pamplona FA, Prediger RD, Pandolfo P, Takahashi RN. The cannabinoid receptor agonist WIN 55,212–2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology. 2006;188(4):641–9.

    Article  CAS  PubMed  Google Scholar 

  14. Abush H, Akirav I. Cannabinoids modulate hippocampal memory and plasticity. Hippocampus. 2010;20(10):1126–38.

    Article  CAS  PubMed  Google Scholar 

  15. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418(6897):530–4.

    Article  CAS  PubMed  Google Scholar 

  16. Marsicano G, Lafenêtre P. Roles of the endocannabinoid system in learning and memory. Curr Top Behav Neurosci. 2009;1:201–30.

    Article  CAS  PubMed  Google Scholar 

  17. Bisaz R, Conboy L, Sandi C. Learning under stress: a role for the neural cell adhesion molecule NCAM. Neurobiol Learn Mem. 2009;91(4):333–42.

    Article  CAS  PubMed  Google Scholar 

  18. Sandi C, Woodson JC, Haynes VF, Park CR, Touyarot K, Lopez-Fernandez MA, et al. Acute stress-induced impairment of spatial memory is associated with decreased expression of neural cell adhesion molecule in the hippocampus and prefrontal cortex. Biol Psychiatry. 2005;57(8):856–64.

    Article  PubMed  Google Scholar 

  19. Shors TJ. Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiol Learn Mem. 2001;75(1):10–29.

    Article  CAS  PubMed  Google Scholar 

  20. Howland JG, Wang YT. Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res. 2008;169:145–58.

    Article  CAS  PubMed  Google Scholar 

  21. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned Cdna. Nature. 1990;346(6284):561–4.

    Article  CAS  PubMed  Google Scholar 

  22. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sugiura S, Kondo A, Sukagawa S, Nakane A, Shinoda K, Itoh K, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97A.

    Article  CAS  PubMed  Google Scholar 

  24. Fraser GA. The use of a synthetic cannabinoid in the management of Treatment‐Resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neurosci Ther. 2009;15(1):84–8.

    Article  PubMed  Google Scholar 

  25. Gorzalka BB, Hill MN, Hillard CJ. Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev. 2008;32(6):1152–60.

    Article  CAS  PubMed  Google Scholar 

  26. Moreira FA, Wotjak CT. Cannabinoids and anxiety. Curr Top Behav Neurosci. 2010;2:429–50.

    Article  PubMed  Google Scholar 

  27. Riebe CJ, Wotjak CT. Endocannabinoids and stress. Stress. 2011;14(4):384–97.

    Article  CAS  PubMed  Google Scholar 

  28. Abush H, Akirav I. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory. Neuropsychopharmacology. 2013;38(8):1521–34 (Feb 20).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A, et al. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry. 2007;62(10):1103–10.

    Article  CAS  PubMed  Google Scholar 

  30. Ganon-Elazar E, Akirav I. Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology. 2012;37(2):456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ganon-Elazar E, Akirav I. Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit. Psychoneuroendocrinology. 2013;38(9):1675–87.

    Article  CAS  PubMed  Google Scholar 

  32. Segev A, Rubin AS, Abush H, Richter-Levin G, Akirav I. Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and ltp in a rat model of depression. Neuropsychopharmacology. 2013;39(4):919–33 (Oct 21).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Viveros MP, Marco EM, File SE. Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav. 2005;81(2):331–42.

    Article  CAS  PubMed  Google Scholar 

  34. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1–2):93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873–904.

    Article  PubMed  Google Scholar 

  36. McEwen BS. The brain is the central organ of stress and adaptation. Neuroimage. 2009;47(3):911–3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ahima RS, Harlan RE. Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience. 1990;39(3):579–604.

    Article  CAS  PubMed  Google Scholar 

  38. Fuxe K, Agnati LF. Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med Res Rev. 1985;5(4):441–82.

    Article  CAS  PubMed  Google Scholar 

  39. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF. Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci. 2001;21(23):9506–18.

    CAS  PubMed  Google Scholar 

  41. Sah P, Lopez de Armentia M. Excitatory synaptic transmission in the lateral and central amygdala. Ann N Y Acad Sci. 2003;985:67–77.

    Article  CAS  PubMed  Google Scholar 

  42. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169–91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24(3):151–80.

    Article  CAS  PubMed  Google Scholar 

  44. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci. 2005;8(3):365–71.

    Article  CAS  PubMed  Google Scholar 

  45. Maier SF, Amat J, Baratta MV, Paul E, Watkins LR. Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci. 2006;8(4):397–406.

    PubMed  PubMed Central  Google Scholar 

  46. Jankord R, Herman JP. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci. 2008;1148:64–73.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Akirav I. The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front Behav Neurosci. 2011;5:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Black MD, Stevens RJ, Rogacki N, Featherstone RE, Senyah Y, Giardino O, et al. AVE1625, a cannabinoid CB1 receptor antagonist, as a co-treatment with antipsychotics for schizophrenia: improvement in cognitive function and reduction of antipsychotic-side effects in rodents. Psychopharmacology (Berl). 2011;215(1):149–63.

    Article  CAS  Google Scholar 

  49. Block RI, Ghoneim MM. Effects of chronic marijuana use on human cognition. Psychopharmacology (Berl). 1993;110(1–2):219–28.

    Article  CAS  Google Scholar 

  50. Curran HV, Brignell C, Fletcher S, Middleton P, Henry J. Cognitive and subjective dose–response effects of acute oral delta9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology (Berl). 2002;164(1):61–70.

    Article  CAS  Google Scholar 

  51. Ferrari F, Ottani A, Vivoli R, Giuliani D. Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water-maze task. Pharmacol Biochem Behav. 1999;64(3):555–6.

    Article  CAS  PubMed  Google Scholar 

  52. Molina-Holgado F, Gonzalez MI, Leret ML. Effect of delta9-tetrahydrocannabinol on short-term memory in the rat. Physiol Behav. 1995;57(1):177–9.

    Article  CAS  PubMed  Google Scholar 

  53. Pamplona FA, Bitencourt RM, Takahashi RN. Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol Learn Mem. 2008;90(1):290–3.

    Article  CAS  PubMed  Google Scholar 

  54. Pamplona FA, Takahashi RN. WIN 55212–2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci Lett. 2006;397(1–2):88–92.

    Article  CAS  PubMed  Google Scholar 

  55. Ranganathan M, D’Souza DC. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology (Berl). 2006;188(4):425–44.

    Article  CAS  Google Scholar 

  56. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci U S A. 2009;106(12):4888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hauer D, Ratano P, Morena M, Scaccianoce S, Briegel I, Palmery M, et al. Propofol enhances memory formation via an interaction with the endocannabinoid system. Anesthesiology. 2011;114:1380–8.

    Article  CAS  PubMed  Google Scholar 

  58. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  59. Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, et al. Adolescent rats find repeated delta-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology. 2008;33(5):1113–26.

    Article  PubMed  Google Scholar 

  60. Schneider M, Schömig E, Leweke FM. Preclinical study: acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict Biol. 2008;13(3–4):345–57.

    Article  CAS  PubMed  Google Scholar 

  61. Suenaga T, Ichitani Y. Effects of hippocampal administration of a cannabinoid receptor agonist WIN55,212–2 on spontaneous object and place recognition in rats. Behav Brain Res. 2008;190(2):248–52.

    Article  CAS  PubMed  Google Scholar 

  62. Campolongo P, Morena M, Scaccianoce S, Trezza V, Chiarotti F, Schelling G, et al. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity. Neuropsychopharmacology. 2013;38(7):1276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schneider M, Koch M. The cannabinoid agonist WIN 55,212–2 reduces sensorimotor gating and recognition memory in rats. Behav Pharmacol. 2002;13(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  64. Segev A, Akirav I. Differential effects of cannabinoid receptor agonist on social discrimination and contextual fear in amygdala and hippocampus. Learn Mem. 2011;18(4):254–9.

    Article  CAS  PubMed  Google Scholar 

  65. Da Silva GE Takahashi RN. SR 141716A prevents [delta] 9-tetrahydrocannabinol-induced spatial learning deficit in a Morris-type water maze in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(2):321–5.

    Article  CAS  Google Scholar 

  66. Robinson L, Goonawardena AV, Pertwee R, Hampson RE, Platt B, Riedel G. WIN55, 212–2 induced deficits in spatial learning are mediated by cholinergic hypofunction. Behav Brain Res. 2010;208:584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mishima K, Egashira N, Hirosawa N, Fujii M, Matsumoto Y, Iwasaki K, Fujiwara M. Characteristics of learning and memory impairment induced by delta9-tetrahydrocannabinol in rats. Jpn J Pharmacol. 2001;87(4):297–308.

    Article  CAS  PubMed  Google Scholar 

  68. Varvel SA, Hamm RJ, Martin BR, Lichtman AH. Differential effects of delta9-THC on spatial reference and working memory in mice. Psychopharmacology. 2001;157(2):142–50.

    Article  CAS  PubMed  Google Scholar 

  69. Moore NLT, Greenleaf ALR, Acheson SK, Wilson WA, Swartzwelder HS, Kuhn CM. Role of cannabinoid receptor type 1 desensitization in greater tetrahydrocannabinol impairment of memory in adolescent rats. J Pharmacol Exp Ther. 2010;335(2):294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Diana G, Malloni M, Pieri M. Effects of the synthetic cannabinoid nabilone on spatial learning and hippocampal neurotransmission. Pharmacol Biochem Behav. 2003;75(3):585–91.

    Article  CAS  PubMed  Google Scholar 

  71. Atsak P, Roozendaal B, Campolongo P. Role of the endocannabinoid system in regulating glucocorticoid effects on memory for emotional experiences. J Neurosci. 2012;1:104–16.

    Article  CAS  Google Scholar 

  72. Nasehi M, Piri M, Jamali-Raeufy N, Zarrindast MR. Influence of intracerebral administration of NO agents in dorsal hippocampus (CA1) on cannabinoid state-dependent memory in the step-down passive avoidance test. Physiol Behav. 2010;100(4):297–304.

    Article  CAS  PubMed  Google Scholar 

  73. Ganon-Elazar E, Akirav I. Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J Neurosci. 2009;29(36):11078–88.

    Article  CAS  PubMed  Google Scholar 

  74. Lin HC, Mao SC, Su CL, Gean PW. The role of prefrontal cortex CB1 receptors in the modulation of fear memory. Cereb Cortex. 2009;19(1):165–75.

    Article  CAS  PubMed  Google Scholar 

  75. Bitencourt RM, Pamplona FA, Takahashi RN. Facilitation of contextual fear memory extinction and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats. Eur Neuropsychopharmacol. 2008;18(12):849–59.

    Article  CAS  PubMed  Google Scholar 

  76. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology. 2005;30(3):516–24.

    Article  CAS  PubMed  Google Scholar 

  77. Lemos JI, Resstel LB, Guimarães FS. Involvement of the prelimbic prefrontal cortex on cannabidiol-induced attenuation of contextual conditioned fear in rats. Behav Brain Res. 2010;207(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  78. Varvel SA, Wise LE, Niyuhire F, Cravatt BF, Lichtman AH. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology. 2007;32(5):1032–41.

    Article  CAS  PubMed  Google Scholar 

  79. Harloe JP, Thorpe AJ, Lichtman AH. Differential endocannabinoid regulation of extinction in appetitive and aversive Barnes maze tasks. Learn Mem. 2008;15(11):806–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Holter SM, Kallnik M, Wurst W, Marsicano G, Lutz B, Wotjak CT. Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. Eur J Pharmacol. 2005;510(1–2):69–74.

    Article  PubMed  CAS  Google Scholar 

  81. Niyuhire F, Varvel SA, Thorpe AJ, Stokes RJ, Wiley JL, Lichtman AH. The disruptive effects of the CB 1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology. 2007;191(2):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ramot A, Akirav I. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience. Neurobiol Learn Mem. 2012;97(4):393–401.

    Article  CAS  PubMed  Google Scholar 

  83. Segev A, Ramot A, Akirav I. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task. PLoS One. 2012;7(1):e29988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abush H, Akirav I. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats. PLoS One. 2012;7(2):e31731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hill MN, McEwen BS. Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(5):791–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hill MN, McLaughlin RJ, Bingham B, Shrestha L, Lee TT, Gray JM, et al. Endogenous cannabinoid signaling is essential for stress adaptation. PNAS. 2010;107(20):9406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ. Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology. 2004;145(12):5431–8.

    Article  CAS  PubMed  Google Scholar 

  88. Patel S, Hillard CJ. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur J Neurosci. 2008;27(11):2821–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hill MN, McEwen BS. Endocannabinoids: the silent partner of glucocorticoids in the synapse. Proc Natl Acad Sci U S A. 2009;106(12):4579–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Bitencourt R, Pamplona FA, Takahashi RN. A current overview of cannabinoids and glucocorticoids in facilitating extinction of aversive memories: potential extinction enhancers. Neuropharmacology. 2013;64:389–95.

    Article  PubMed  CAS  Google Scholar 

  91. Clay R, Hebert M, Gill G, Stapleton LA, Pridham A, Coady M, et al. Glucocorticoids are required for extinction of predator stress-induced hyperarousal. Neurobiol Learn Mem. 2011;96(2):367–77.

    Article  CAS  PubMed  Google Scholar 

  92. Yang YL, Chao PK, Lu KT. Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology. 2006;31(5):912–24.

    Article  CAS  PubMed  Google Scholar 

  93. Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23(12):4850–7.

    CAS  PubMed  Google Scholar 

  94. Hill MN, Ho WS, Meier SE, Gorzalka BB, Hillard CJ. Chronic corticosterone treatment increases the endocannabinoid 2-arachidonylglycerol in the rat amygdala. Eur J Pharmacol. 2005;528(1–3):99–102.

    Article  CAS  PubMed  Google Scholar 

  95. Patel S, Roelke CT, Rademacher DJ, Hillard CJ. Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci. 2005;21(4):1057–69.

    Article  PubMed  Google Scholar 

  96. Akirav I. Cannabinoids and glucocorticoids modulate emotional memory after stress. Neurosci Biobehav Rev. 2013;37:2554–63 (Aug 14).

    Article  CAS  PubMed  Google Scholar 

  97. Hill MN, McLaughlin RJ, Morrish AC, Viau V, Floresco SB, Hillard CJ, Gorzalka BB. Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic–pituitary–adrenal axis. Neuropsychopharmacology. 2009;34(13):2733–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Akirav I, Sandi C, Richter-Levin G. Differential activation of hippocampus and amygdala following spatial learning under stress. Eur J Neurosci. 2001;14(4):719–25.

    Article  CAS  PubMed  Google Scholar 

  99. Akirav I, Kozenicky M, Tal D, Sandi C, Venero C, Richter-Levin G. A facilitative role for corticosterone in the acquisition of a spatial task under moderate stress. Learn Mem. 2004;11(2):188–95.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Diamond DM, Campbell AM, Park CR, Woodson JC, Conrad CD, Bachstetter AD, Mervis RF. Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesis. Hippocampus. 2006;16(7):571–6.

    Article  PubMed  Google Scholar 

  101. De Kloet ER Oitzl MS Joels M. Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci. 1999;22(10):422–6.

    Article  PubMed  Google Scholar 

  102. Sandi C, Loscertales M, Guaza C. Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. Eur J Neurosci. 1997;9(4):637–42.

    Article  CAS  PubMed  Google Scholar 

  103. Roozendaal B. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology. 2000;25(3):213–38.

    Article  CAS  PubMed  Google Scholar 

  104. Rodríguez de Fonseca F, Carrera MR, Navarro M, Koob GF, Weiss F. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science. 1997;276(5321):2050–4.

    Article  PubMed  Google Scholar 

  105. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62(6):757–71.

    Article  CAS  PubMed  Google Scholar 

  106. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.

    Article  CAS  PubMed  Google Scholar 

  107. Paré D, Smith Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience. 1993;57(4):1077–90.

    Article  PubMed  Google Scholar 

  108. Pistis M, Perra S, Pillolla G, Melis M, Gessa GL, Muntoni AL. Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions. Neuropharmacology. 2004;46(1):115–25.

    Article  CAS  PubMed  Google Scholar 

  109. Phan KL, Angstadt M, Golden J, Onyewuenyi I, Popovska A, de Wit H. Cannabinoid modulation of amygdala reactivity to social signals of threat in humans. J Neurosci. 2008;28(10):2313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irit Akirav PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akirav, I. (2015). Cannabinoids Modulation of Emotional and Non-Emotional Memory Processes After Stress. In: Campolongo, P., Fattore, L. (eds) Cannabinoid Modulation of Emotion, Memory, and Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2294-9_2

Download citation

Publish with us

Policies and ethics