Skip to main content

Practical Strategies for Small-Molecule Probe Development in Chemical Biology

  • Protocol
  • First Online:
Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1263))

  • 5162 Accesses

Abstract

The effective identification, selection, and implementation of small molecules for the interrogation of biological systems require an intricate understanding of the chemical principles underlying their cellular activities. While much has been published regarding the use of screening techniques in forward chemical genetics platforms and on small-molecule target identification, less emphasis has been placed on detailed strategies for evaluating, selecting, and optimizing screening hits. This chapter provides practical tools for identifying and developing promising screening hit compounds into effective tools for biological discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bucci M, Goodman C, Sheppard TL (2010) A decade of chemical biology. Nat Chem Biol 6:847–854

    Article  CAS  PubMed  Google Scholar 

  2. Alaimo PJ, Shogren-Knaak MA, Shokat KM (2001) Chemical genetic approaches for the elucidation of signaling pathways. Curr Opin Chem Biol 5:360–367

    Article  CAS  PubMed  Google Scholar 

  3. Frearson JA, Collie IT (2009) HTS and hit finding in academia–from chemical genomics to drug discovery. Drug Discov Today 14:1150–1158

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hasson SA, Inglese J (2013) Innovation in academic chemical screening: filling the gaps in chemical biology. Curr Opin Chem Biol 17:329–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Huryn DM (2013) Drug discovery in an academic setting: playing to the strengths. ACS Med Chem Lett 4:313–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Garcia-Serna R, Mestres J (2011) Chemical probes for biological systems. Drug Discov Today 16:99–106

    Article  CAS  PubMed  Google Scholar 

  7. Macarron R et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195

    Article  CAS  PubMed  Google Scholar 

  8. Castoreno AB, Eggert US (2011) Small molecule probes of cellular pathways and networks. ACS Chem Biol 6:86–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Prior M et al (2014) Back to the future with phenotypic screening. ACS Chem Neurosci 5:503–513

    Article  CAS  PubMed  Google Scholar 

  10. Lee JA, Berg EL (2013) Neoclassic drug discovery: the case for lead generation using phenotypic and functional approaches. J Biomol Screen 18:1143–1155

    Article  CAS  PubMed  Google Scholar 

  11. Eggert US (2013) The why and how of phenotypic small-molecule screens. Nat Chem Biol 9:206–209

    Article  CAS  PubMed  Google Scholar 

  12. Tamplin OJ et al (2012) Small molecule screening in zebrafish: swimming in potential drug therapies. Wiley Interdiscip Rev Dev Biol 1:459–468

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13:172–183

    Article  CAS  PubMed  Google Scholar 

  14. O’Connor CJ, Laraia L, Spring DR (2011) Chemical genetics. Chem Soc Rev 40:4332–4345

    Article  PubMed  Google Scholar 

  15. Spring DR (2005) Chemical genetics to chemical genomics: small molecules offer big insights. Chem Soc Rev 34:472–482

    Article  CAS  PubMed  Google Scholar 

  16. Workman P, Collins I (2010) Probing the probes: fitness factors for small molecule tools. Chem Biol 17:561–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lipinski CA et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  18. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  CAS  PubMed  Google Scholar 

  19. Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6(3):159–161

    Article  CAS  PubMed  Google Scholar 

  20. Murray AJ (2008) Pharmacological PKA inhibition: all may not be what it seems. Sci Signal 1:re4

    Article  PubMed  Google Scholar 

  21. Cohen P (2010) Guidelines for the effective use of chemical inhibitors of protein function to understand their roles in cell regulation. Biochem J 425:53–54

    Article  CAS  Google Scholar 

  22. Lipinski CA (2010) Overview of hit to lead: the medicinal chemist’s role from HTS retest to lead optimization hand off. In: Hayward MM (ed) Lead-seeking approaches: topics in medicinal chemistry, 5th edn. Springer, Berlin, pp 125–140

    Google Scholar 

  23. Wagner BK, Clemons PA (2009) Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling. Curr Opin Chem Biol 13:539–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rishton GM (2003) Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 8:86–96

    Article  CAS  PubMed  Google Scholar 

  25. Singh J et al (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10:307–317

    Article  CAS  PubMed  Google Scholar 

  26. Heal WP, Dang THT, Tate EW (2011) Activity-based probes: discovering new biology and new drug targets. Chem Soc Rev 40:246–257

    Article  CAS  PubMed  Google Scholar 

  27. Gleeson MP et al (2011) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 10:197–208

    Article  CAS  PubMed  Google Scholar 

  28. Matson SL et al (2009) Best practices in compound management for preserving compound integrity and accurately providing samples for assays. J Biomol Screen 14:476–484

    Article  CAS  PubMed  Google Scholar 

  29. McDonald GR et al (2008) Bioactive contaminants leach from disposable laboratory plasticware. Science 322:917

    Article  CAS  PubMed  Google Scholar 

  30. Hermann JC et al (2013) Metal impurities cause false positives in high-throughput screening campaigns. ACS Med Chem Lett 4:197–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Thorne N, Auld DS, Inglese J (2010) Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr Opin Chem Biol 14:315–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Thorne N et al (2012) Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chem Biol 19:1060–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Schenone M et al (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240

    Article  CAS  PubMed  Google Scholar 

  34. Williams HD et al (2012) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499

    Article  Google Scholar 

  35. Meanwell NA (2011) Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem 54:2529–2591

    Article  CAS  PubMed  Google Scholar 

  36. Böhm H-J et al (2004) Fluorine in medicinal chemistry. ChemBioChem 5:637–643

    Article  PubMed  Google Scholar 

  37. Sun H, Tawa G, Wallqvist A (2012) Classification of scaffold-hopping approaches. Drug Discov Today 17:310–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Heretsch P, Tzagkaroulaki L, Giannis A (2010) Modulators of the hedgehog signaling pathway. Bioorg Med Chem 18:6613–6624

    Article  CAS  PubMed  Google Scholar 

  39. Heretsch P, Tzagkaroulaki L, Giannis A (2010) Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angew Chem Int Ed 49:3418–3427

    Article  CAS  Google Scholar 

  40. Chen JK et al (2002) Small molecule modulation of smoothened activity. Proc Natl Acad Sci 99:14071–14076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Robarge KD et al (2009) GDC-0449—a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 19:5576–5581

    Article  CAS  PubMed  Google Scholar 

  42. Yauch RL et al (2009) Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326:572–574

    Article  CAS  PubMed  Google Scholar 

  43. Wu X et al (2002) A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc 124:14520–14521

    Article  CAS  PubMed  Google Scholar 

  44. Sinha S, Chen JK (2005) Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol 2:29–30

    Article  PubMed  Google Scholar 

  45. Stanton BZ et al (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 5:154–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hyman JM et al (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci U S A 106:14132–14137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Firestone AJ et al (2012) Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484:125–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gary Sulikowski for his helpful guidance and input. J.E.H. is supported by an American Heart Association Postdoctoral Fellowship (14POST19550002). C.C.H. is supported by the US NIH NHLBI (1R01HL104040), the US Veterans Administration (101BX000771), and the Cali Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Hempel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hempel, J.E., Hong, C.C. (2015). Practical Strategies for Small-Molecule Probe Development in Chemical Biology. In: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology. Methods in Molecular Biology, vol 1263. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2269-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2269-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2268-0

  • Online ISBN: 978-1-4939-2269-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics