Skip to main content

Predictive Coding in Sensory Cortex

  • Chapter
  • First Online:
An Introduction to Model-Based Cognitive Neuroscience

Abstract

In recent years, predictive coding has become an increasingly influential model of how the brain processes sensory information. Predictive coding theories state that the brain is constantly trying to predict the inputs it receives, and each region in the cortical sensory hierarchy represents both these predictions and the mismatch between predictions and input (prediction error). In this chapter, we review the extant empirical evidence for this theory, as well as discuss recent theoretical advances. We find that predictive coding provides a good explanation for many phenomena observed in perception, and generates testable hypotheses. Furthermore, we suggest possible avenues for further empirical testing and for broadening the perspective of the role predictive coding may play in cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87

    CAS  PubMed  Google Scholar 

  2. Mumford D (1992) On the computational architecture of the neocortex. II. The role of corticocortical loops. Biol Cybern 66(3):241–251

    CAS  PubMed  Google Scholar 

  3. Friston KJ (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360(1456):815–836

    PubMed Central  PubMed  Google Scholar 

  4. Helmholtz H (1867) Handbuch der physiologischen optik. L. Voss, Leipzig

    Google Scholar 

  5. Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5(6):598–604

    CAS  PubMed  Google Scholar 

  6. Gregory RL (1997) Knowledge in perception and illusion. Phil Trans R Soc Lond B 352:1121–1128

    CAS  Google Scholar 

  7. Knill DC, Richards W (Eds) (1996) Perception as Bayesian inference. Cambridge University Press: Cambridge

    Google Scholar 

  8. Yuille A, Kersten D (2006) Vision as Bayesian inference: analysis by synthesis? Trends Cogn Sci 10(7):301–308

    PubMed  Google Scholar 

  9. Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20(7):1434–1448

    PubMed  Google Scholar 

  10. Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev Psychol 55:271–304

    PubMed  Google Scholar 

  11. Den Ouden HEM, Kok P, De Lange FP (2012) How prediction errors shape perception, attention, and motivation. Front Psychol 3:548

    Google Scholar 

  12. Spratling MW (2012) Predictive coding as a model of the V1 saliency map hypothesis. Neural Networks 26:7–28

    CAS  PubMed  Google Scholar 

  13. Pearce JM, Hall G (1980) A model for Pavlovian learning: variations on the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87(6):532–552

    CAS  PubMed  Google Scholar 

  14. Kok P, Jehee JFM, De Lange FP (2012) Less is more: expectation sharpens representations in the primary visual cortex. Neuron 75:265–270

    CAS  PubMed  Google Scholar 

  15. Bar M (2004) Visual objects in context. Nat Rev Neurosci 5(8):617–629

    CAS  PubMed  Google Scholar 

  16. Ahissar M, Hochstein S (2004) The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci 8(10):457–464

    PubMed  Google Scholar 

  17. Sugase Y et al (1999) Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869–873

    CAS  PubMed  Google Scholar 

  18. Spratling MW (2008) Reconciling predictive coding and biased competition models of cortical function. Front Comput Neurosci 2:4

    PubMed Central  PubMed  Google Scholar 

  19. Bastos AM et al (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47

    CAS  PubMed  Google Scholar 

  21. Maunsell JHR, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586

    CAS  PubMed  Google Scholar 

  22. Rockland K, Pandya D (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    CAS  PubMed  Google Scholar 

  23. Rao RPN, Sejnowski, TJ (2002) Predictive coding, cortical feedback, and spike-timing dependent plasticity. In: Rao RPN, Olshausen BA, Lewicki MS (eds) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge, pp 297–315

    Google Scholar 

  24. Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10(1):14–23

    PubMed  Google Scholar 

  25. Pariyadath V, Eagleman D (2007) The effect of predictability on subjective duration. PLoS ONE 2(11):e1264

    PubMed Central  PubMed  Google Scholar 

  26. Summerfield C et al (2008) Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci 11(9):1004–1006

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Todorovic A et al (2011) Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci 31(25):9118–9123

    CAS  PubMed  Google Scholar 

  28. Meyer T, Olson CR (2011) Statistical learning of visual transitions in monkey inferotemporal cortex. Proc Natl Acad Sci U S A 108(48):19401–19406

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Todorovic A, De Lange FP (2012) Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields. J Neurosci 32(39):13389–13395

    CAS  PubMed  Google Scholar 

  30. Wacongne C et al (2011) Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci U S A 108(51):20754–20759

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Wacongne C, Changeux JP, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32(11):3665–3678

    CAS  PubMed  Google Scholar 

  32. Schröger E, Wolff C (1996) Mismatch response of the human brain to changes in sound location. Neuroreport 7:3005–3008

    PubMed  Google Scholar 

  33. Muckli L et al (2005) Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS Biol 3(8):e265

    PubMed Central  PubMed  Google Scholar 

  34. Sterzer P, Haynes JD, Rees G (2006) Primary visual cortex activation on the path of apparent motion is mediated by feedback from hMT + /V5. Neuroimage 32:1308–1316

    PubMed  Google Scholar 

  35. Wibral M et al (2009) The timing of feedback to early visual cortex in the perception of long-range apparent motion. Cereb Cortex 19:1567–1582

    PubMed Central  PubMed  Google Scholar 

  36. Ahmed B et al (2008) Cortical dynamics subserving visual apparent motion. Cereb Cortex 18:2796–2810

    PubMed Central  PubMed  Google Scholar 

  37. Alink A et al (2010) Stimulus predictability reduces responses in primary visual cortex. J Neurosci 30(8):2960–2966

    CAS  PubMed  Google Scholar 

  38. Chandrasekaran C et al (2009) The natural statistics of audiovisual speech. PLoS Comput Biol 5(7):e1000436

    PubMed Central  PubMed  Google Scholar 

  39. Sumby WH, Pollack I (1954) Visual contribution to speech intelligibility in noise. J Acoust Soc Am 26(2):212–215

    Google Scholar 

  40. Van Wassenhove V, Grant KW, Poeppel D (2005) Visual speech speeds up the neural processing of auditory speech. Proc Natl Acad Sci U S A 102(4):1181–1186

    PubMed Central  PubMed  Google Scholar 

  41. Arnal LH et al (2009) Dual neural routing of visual facilitation in speech processing. J Neurosci 29(43):13445–13453

    CAS  PubMed  Google Scholar 

  42. McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748

    CAS  PubMed  Google Scholar 

  43. Arnal LH, Wyart V, Giraud A (2011) Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nat Neurosci 14(6):797–801

    CAS  PubMed  Google Scholar 

  44. Den Ouden HEM et al (2009) A dual role for prediction error in associative learning. Cereb Cortex 19:1175–1185

    PubMed Central  PubMed  Google Scholar 

  45. Den Ouden HEM et al (2010) Striatal prediction error modulates cortical coupling. J Neurosci 30(9):3210–3219

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Egner T, Monti JM, Summerfield C (2010) Expectation and surprise determine neural population responses in the ventral visual stream. J Neurosci 30(49):16601–16608

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Bell CC (2001) Memory-based expectations in electrosensory systems. Curr Opin Neurobiol 11:481–487

    CAS  PubMed  Google Scholar 

  48. Blakemore SJ, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle sensation. Nat Neurosci 1(7):635–640

    CAS  PubMed  Google Scholar 

  49. Houde JF et al (2002) Modulation of the auditory cortex during speech: an MEG study. J Cognitive Neurosci 14(8):1125–1138

    Google Scholar 

  50. Martikainen MH, Kaneko K, Hari R (2005) Suppressed responses to self-triggered sounds in the human auditory cortex. Cereb Cortex 15:299–302

    PubMed  Google Scholar 

  51. Shergill SS et al (2013) Modulation of somatosensory processing by action. Neuroimage 70:356–362

    PubMed  Google Scholar 

  52. Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev Neurosci 9:587–600

    CAS  PubMed  Google Scholar 

  53. Murray SO et al (2002) Shape perception reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A 99(23):15164–15169

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Fang F, Kersten D, Murray SO (2008) Perceptual grouping and inverse fMRI activity patterns in human visual cortex. J Vision 8(7):2–9

    Google Scholar 

  55. Wyart V, Nobre AC, Summerfield C (2012) Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proc Natl Acad Sci U S A 109(9):3593–3598

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Kok P et al (2012) Attention reverses the effect of prediction silencing sensory signals. Cereb Cortex 22(9):2197–2206

    PubMed  Google Scholar 

  57. Kok P, Failing FM, De Lange FP (2014) Prior expectations evoke stimulus templates in the primary visual cortex. J Cogn Neurosci 26(7):1546–1554

    Google Scholar 

  58. Smith FW, Muckli L (2010) Nonstimulated early visual areas carry information about surrounding context. Proc Natl Acad Sci U S A 107(46):20099–20103

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Lee TS, Nguyen M (2001) Dynamics of subjective contour formation in the early visual cortex. Proc Natl Acad Sci U S A 98(4):1907–1911

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Kok P, De Lange FP (2014) Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex. Curr Biol 24:1531–1535

    Google Scholar 

  61. Von Der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224(4654):1260–1262

    Google Scholar 

  62. Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associates. Nature 354:152–155

    CAS  PubMed  Google Scholar 

  63. Erickson CA, Desimone R (1999) Responses of macaque perirhinal neurons during and after visual stimulus association learning. J Neurosci 19(23):10404–10416

    CAS  PubMed  Google Scholar 

  64. Schapiro AC, Kustner LV, Turk-Browne NB (2012) Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr Biol 22(17):1622–1627

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Sterzer P, Frith C, Petrovic P (2008) Believing is seeing: expectations alter visual awareness. Curr Biol 18(16):R697–R698

    CAS  PubMed  Google Scholar 

  66. Denison RN, Piazza EA, Silver MA (2011) Predictive context influences perceptual selection during binocular rivarly. Front Human Neurosci 5:166

    Google Scholar 

  67. Chalk M, Seitz AR, Seriès P (2010) Rapidly learned stimulus expectations alter perception of motion. J Vision 10(8):1–18

    Google Scholar 

  68. Sotiropoulos G, Seitz AR, Seriès P (2011) Changing expectations about speeds alters perceived motion direction. Curr Biol 21(21):R883–R884

    CAS  PubMed  Google Scholar 

  69. Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–74

    CAS  PubMed  Google Scholar 

  70. Nienborg H, Cumming BG (2009) Decision-related activity in sensory neurons reflects more than a neuron’s causal effect. Nature 459:89–92

    Google Scholar 

  71. Serences JT, Boynton GM (2007) The representation of behavioral choice for motion in human visual cortex. J Neurosci 27(47):12893–12899

    CAS  PubMed  Google Scholar 

  72. Summerfield C, Egner T (2009) Expectation (and attention) in visual cognition. Trends Cogn Sci 13(9):403–409

    PubMed  Google Scholar 

  73. Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263(5146):520–522

    CAS  PubMed  Google Scholar 

  74. Woloszyn L, Sheinberg DL (2012) Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron 74:193–205

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Jones HE, Wang W, Sillito AM (2002) Spatial organization and magnitude of orientation contrast interactions in primate V1. J Neurophysiol 88:2796–2808

    CAS  PubMed  Google Scholar 

  77. Knierim JJ, Van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 67:961–980

    CAS  PubMed  Google Scholar 

  78. Sillito AM et al (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378:492–496

    CAS  PubMed  Google Scholar 

  79. Angelucci A, Bullier J (2003) Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? J Physiology-Paris 97:141–154

    Google Scholar 

  80. Hupé JM et al (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787

    PubMed  Google Scholar 

  81. Johnson RR, Burkhalter A (1996) Microcircuitry of forward and feedback connections within rat visual cortex. J Comp Neurol 368:383–398

    CAS  PubMed  Google Scholar 

  82. Johnson RR, Burkhalter A (1997) A polysynaptic feedback circuit in rat visual cortex. J Neurosci 17(18):7129–7140

    CAS  PubMed  Google Scholar 

  83. Spratling MW (2008) Predictive coding as a model of biased competition in visual attention. Vision Res 48:1391–1408

    CAS  PubMed  Google Scholar 

  84. Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14

    PubMed  Google Scholar 

  85. Olsen SR et al (2012) Gain control by layer six in cortical circuits of vision. Nature 483:47–52

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Koch C, Poggio T (1999) Prediction the visual world: silence is golden. Nat Neurosci 2(1):9–10

    CAS  PubMed  Google Scholar 

  87. Doherty JR et al (2005) Synergistic effect of combined temporal and spatial expectations on visual attention. J Neurosci 25(36):8259–8266

    CAS  PubMed  Google Scholar 

  88. Chaumon M, Drouet V, Tallon-Baudry C (2008) Unconscious associative memory affects visual processing before 100 ms. J Vis 8(3):1–10

    PubMed  Google Scholar 

  89. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25

    CAS  PubMed  Google Scholar 

  90. Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol 17(4):1057–1074

    CAS  Google Scholar 

  91. Friston KJ (2009) The free-energy principle: a rough guide to the brain? Trends Cogn Sci 13(7):293–301

    PubMed  Google Scholar 

  92. Feldman H, Friston KJ (2010) Attention, uncertainty, and free-energy. Front Human Neurosci 4:215

    Google Scholar 

  93. Rao RPN, Ballard DH (1997) Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput 9:721–763

    CAS  PubMed  Google Scholar 

  94. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosc 18:193–222

    CAS  PubMed  Google Scholar 

  95. Maunsell JHR, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29(6):317–322

    CAS  PubMed  Google Scholar 

  96. Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61(2):168–185

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol 109(2):160–174

    CAS  PubMed  Google Scholar 

  98. Hohwy J (2012) Attention and conscious perception in the hypothesis testing brain. Front Psych 3:96

    Google Scholar 

  99. Rauss K, Schwartz S, Pourtois G (2011) Top-down effects on early visual processing in humans: a predictive coding framework. Neurosci Biobehav Rev 35:1237–1253

    PubMed  Google Scholar 

  100. Hesselmann G et al (2010) Predictive coding or evidence accumulation? False inference and neuronal fluctuations. PLoS ONE 5:e9926

    PubMed Central  PubMed  Google Scholar 

  101. Ress D, Backus BT, Heeger DJ (2000) Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci 3(9):940–945

    CAS  PubMed  Google Scholar 

  102. Ress D, Heeger DJ (2003) Neuronal correlates of perception in early visual cortex. Nat Neurosci 6(4):414–420

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–888

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Cohen MR, Maunsell JHR (2009) Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12(12):1594–1601

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Lakatos P et al (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113

    CAS  PubMed  Google Scholar 

  106. Koopmans PJ, Barth M, Norris DG (2010) Layer-Specific BOLD Activation in Human V1. Hum Brain Mapp 31:1297–1304

    PubMed  Google Scholar 

  107. Takeuchi D et al (2011) Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331:1443–1447

    CAS  PubMed  Google Scholar 

  108. Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early visual areas. Nature 458:632–635

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Lee SH, Kravitz DJ, Baker CI (2012) Disentangling visual imagery and perception of realworld objects. Neuroimage 59:4064–4073

    PubMed Central  PubMed  Google Scholar 

  110. Albers AM et al (2013) Shared representations for working memory and mental imagery in early visual cortex. Curr Biol 23:1427–1431

    Google Scholar 

  111. Horikawa T et al (2013) Neural decoding of visual imagery during sleep. Science 340:639–642

    CAS  PubMed  Google Scholar 

  112. Schindel R, Rowlands J, Arnold DH (2011) The oddball effect: perceived duration and predictive coding. J Vision 11(2):17

    Google Scholar 

  113. Tse PU et al (2004) Attention and the subjective expansion of time. Percept Psychophys 66(7):1171–1189

    PubMed  Google Scholar 

  114. Carrasco M, Ling S, Read S (2004) Attention alters appearance. Nat Neurosci 7(3):308–313

    CAS  PubMed  Google Scholar 

  115. Corlett PR et al (2011) Glutamatergic model psychoses: prediction error, learning, and inference. Neuropsychopharmacol 36:294–315

    CAS  Google Scholar 

  116. Fletcher PC, Frith CD (2009) Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci 10(1):48–58

    CAS  PubMed  Google Scholar 

  117. Eagleman DM, Pariyadath V (2009) Is subjective duration a signature of coding efficiency? Phil Trans R Soc B 364:1841–1851

    PubMed Central  PubMed  Google Scholar 

  118. Blakemore SJ et al (2000) The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol Med 30:1131–1139

    CAS  PubMed  Google Scholar 

  119. Pellicano E, Burr D (2012) When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci 16(10):504–510

    PubMed  Google Scholar 

  120. Van de Cruys S et al (2013) Weak priors versus overfitting of predictions in autism: reply to Pellicano and Burr (TICS, 2012). Iperception 4:95–97

    PubMed Central  PubMed  Google Scholar 

  121. Clark A (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36:181–253

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kok, P., de Lange, F. (2015). Predictive Coding in Sensory Cortex. In: Forstmann, B., Wagenmakers, EJ. (eds) An Introduction to Model-Based Cognitive Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2236-9_11

Download citation

Publish with us

Policies and ethics