Skip to main content

Plant Immunophilins: A Protein Family with Diverse Functions Beyond Protein Folding Activity

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

Immunophilins were discovered as cellular receptors for immunosuppressive drugs: cyclosporine A and FK506. Cyclophilins (CYPs, receptors for cyclosporine A) and FK506-binding proteins (FKBPs, receptors for FK506) do not share sequence homology, but have a common feature of peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans conversion of X-Pro peptide bonds, a rate-limiting step in the process of protein folding. Immunophilins are widely present in organisms from bacteria and fungi, to animals and plants. Genomics studies revealed that plants possess the largest immunophilin family. However, the physiological function of plant immunophilins is poorly understood. In this review, starting with a brief introduction of the immunophilin family and the current knowledge about their physiological roles in diverse organisms, the recent advances in the elucidation of plant immunophilin’s physiological roles, largely via functional genomics tools, are summarized here. Notably, a striking feature of plant immunophilins is that a large fraction is localized in the chloroplast. Recent studies reveal that chloroplast immunophilins play a central role in the assembly and maintenance of photosynthetic complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn J, Kim DW, You Y, Seok M, Park J, Hwang H, Kim BG, Luan S, Park HS, Cho HS (2010) Classification of rice (Oryza sativa L. japonica Nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 10:253–275

    PubMed Central  PubMed  Google Scholar 

  • Arevalo-Rodrıguez M, Heitman J (2005) Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukarot Cell 4(1):17–29

    Google Scholar 

  • Arevalo-Rodriguez M, Wu X, Hanes SD, Heitman J (2004) Prolyl isomerases in yeast. Front Biosci 9:2420–46

    CAS  PubMed  Google Scholar 

  • Aviezer-Hagai K, Skovorodnikova J, Galigniana M, Farchi-Pisanty O, Maayan E, Bocovza S, Efrat Y, Koskull-Doring P, Ohad N, Breiman A (2007) Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind Hsp90. Plant Mol Biol 63:237–255

    CAS  PubMed  Google Scholar 

  • Bell A, Monaghan P, Page AP (2006) Peptidyl-prolyl cis–trans isomerases (immunophilins) and their roles in parasite biochemistry, host–parasite interaction and antiparasitic drug action. Inter J Parasit 36:261–276

    CAS  Google Scholar 

  • Berardini TZ, Bollman K, Sun H, Poethig RS (2001) Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science 291:2405–2407

    CAS  PubMed  Google Scholar 

  • Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL (1990) Probing immunosuppressant action with a non-natural immunophilin ligand. Science 250:556–559

    CAS  PubMed  Google Scholar 

  • Bissoli G, Ninoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, Garcia-Sanchez M, Fernandez JA, Mulet JM, Serrano R (2012) Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J 70:704–716

    CAS  PubMed  Google Scholar 

  • Blecher O, Erel N, Callebaut I, Aviezer K, Breiman A (1996) A novel plant peptidyl-prolyl cis-trans-isomerase (PPIase): cDNA cloning, structural analysis, enzymatic activity and expression. Plant Mol Biol 32:493–504

    CAS  PubMed  Google Scholar 

  • Bouchard R, Bailly A, Blakeslee JJ, Oehring SC, Vincenzetti V, Lee OR, Paponov I, Palme K, Mancuso S, Murphy AS, Schulz B, Geisler M (2006) Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281(41):30603–12

    CAS  PubMed  Google Scholar 

  • Brandts JF, Halvorson HR, Brennan M (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14:4953–4963

    CAS  PubMed  Google Scholar 

  • Buchanan BB, Luan S (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J Exp Bot 56(416):1439–1447

    CAS  PubMed  Google Scholar 

  • Cai W, Ma J, Guo J, Zhang L (2008) Function of ROC4 in the efficient repair of photodamaged photosystem II in Arabidopsis. Photochem Photobiol 84(6):1343–8

    CAS  PubMed  Google Scholar 

  • Calne RY, White DJG, Thiru S, Evans DB, McMaster P, Dunn DC (1978) Cyclosporin A in patients receiving renal allografts from cadaver donors. The Lancet II:1323–1327

    Google Scholar 

  • Carol RJ, Breiman A, Erel N, Vittorioso P, Bellini C (2001) Pasticcino1 (AtFKBP70) is a nuclear-localised immunophilin required during Arabidopsis thaliana embryogenesis. Plant Sci 161:527–535

    CAS  Google Scholar 

  • Chung KC, Zamble DB (2011) The Escherichia Coli metal-binding chaperone SlyD interacts with the large subunit of [NiFe]-hydrogenase 3. FEBS Lett 585(2):291–4

    CAS  PubMed  Google Scholar 

  • Coaker G, Falick A, Staskawicz B (2005) Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308(5721):548–50

    CAS  PubMed  Google Scholar 

  • Coaker G, Zhu G, Ding Z, Van Doren SR, Staskawicz B (2006) Eukaryotic cyclophilin as a molecular switch for effector activation. Mol Microbiol 61(6):1485–96

    CAS  PubMed  Google Scholar 

  • Crespo JL, Díaz-Troya S, Florencio FJ (2005) Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139(4):1736–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis ES, Becker A, Heitman J, Hall MN, Brennan MB (1992) Proc Natl Acad Sci U S A 89:11169–11172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci U S A 95:7040–7045

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dhillon N, Jeremy TJ (1996) Immunophilins in the yeast Saccharomyces cerevisiae: a different spin on proline rotamases. Methods 9:165–176

    CAS  PubMed  Google Scholar 

  • Dolinski K, Muir S, Cardenas M, Heitman J (1997) All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94(24):13093–8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, Luan S (2008) A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc Natl Acad Sci U S A 105(42):16386–16391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duina AA, Chang HC, Marsh JA, Lindquist S, Gaber RF (1996) A cyclophilin function in Hsp90-dependent signal transduction. Science 274(5293):1713–5

    CAS  PubMed  Google Scholar 

  • Earley KW, Poethig RS (2011) Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 286(44):38184–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edvardsson A, Shapiguzov A, Petersson UA, Schröder WP, Vener AV (2007) Immunophilin AtFKBP13 sustains all peptidyl-prolyl isomerase activity in the thylakoid lumen from Arabidopsis thaliana deficient in AtCYP20-2. Biochemistry 46(33):9432–42

    CAS  PubMed  Google Scholar 

  • Edwards KJ, Ollis DL, Dixon NE (1997) Crystal structure of cytoplasmic Escherichia coli peptidyl-prolyl isomerase: evidence for decreased mobility of loops upon complexation. J Mol Biol 271(2):258–65

    CAS  PubMed  Google Scholar 

  • Etzkorn FA, Chang ZY, Stolz LA, Walsh CT (1994) Cyclophilin residues that affect noncompetitive inhibition of the protein serine phosphatase activity of calcineurin by the cyclophilin-Cyclosporin A complex. Biochemistry 33:2380–2388

    CAS  PubMed  Google Scholar 

  • Faure JD, Gingerich D, Howell SH (1998) An Arabidopsis immunophilin, AtFKBP12, binds to AtFIP37 (FKBP interacting protein) in an interaction that is disrupted by FK506. Plant J 15:783–789

    CAS  PubMed  Google Scholar 

  • Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337:476–478

    CAS  PubMed  Google Scholar 

  • Freeman BC, Toft DO, Morimoto RI (1996) Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 274:1718–1720

    CAS  PubMed  Google Scholar 

  • Freskgard PO, Bergenhem N, Jonsson BH, Svensson M, Carlsson U (1992) Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase. Science 258:466–468

    CAS  PubMed  Google Scholar 

  • Fu A, He Z, Cho HS, Lima A, Buchanan BB, Luan S (2007) A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. PNAS USA 104(40):15947–15952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fulgosi H, Vener AV, Altschmied L, Herrmann RG, Andersson B (1998) A novel multi-functional chloroplast protein: identification of a 40 kDa immunophilin-like protein located in the thylakoid lumen. EMBO J 17:1577–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Futer O, DeCenzo MT, Aldape RA, Livingston DJ (1995) FK506 binding protein mutational analysis. J Biol Chem 270:18935–18940

    CAS  PubMed  Google Scholar 

  • Ge X, Lyu ZX, Liu Y, Wang R, Zhao XS, Fu X, Chang Z (2014) Identification of FkpA as a key quality control factor for the biogenesis of outer membrane proteins under heat shock conditions. J Bacteriol 196(3):672–80

    PubMed Central  PubMed  Google Scholar 

  • Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14(10):4238–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kolukisaoglu UH, Schulz B, Martinoia E (2004) Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15(7):3393–405

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gollan PJ, Bhave M (2010) Genome-wide analysis of genes encoding FK506-binding proteins in rice.Plant. Mol Biol 72(1–2):1–16

    CAS  Google Scholar 

  • Granzin J, Eckhoff A, Weiergräber OH (2006) Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana: a paradigm for regulation of plant ABC transporters. J Mol Biol 364(4):799–809

    CAS  PubMed  Google Scholar 

  • Graubner W, Schierhorn A, Bruser T (2007) DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J Biol Chem 282:7116–7124

    CAS  PubMed  Google Scholar 

  • Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547

    CAS  PubMed  Google Scholar 

  • Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK-506 is a cis-trans peptidyl-prolyl isomerase. Nature 341:758–760

    CAS  PubMed  Google Scholar 

  • He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heitman J, Movva NR, Hiestand PC, Hall MN (1991) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88(5):1948–52

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hochwagen A, Tham WH, Brar GA, Amon A (2005) The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122(6):861–73

    CAS  PubMed  Google Scholar 

  • Hullmann J, Patzer SI, Römer C, Hantke K, Braun V (2008) Periplasmic chaperone FkpA is essential for imported colicin M toxicity. Mol Microbiol 69(4):926–37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ingelsson B, Shapiguzov A, Kieselbach T, Vener AV (2009) Peptidyl-prolyl isomerase activity in chloroplast thylakoid lumen is a dispensable function of immunophilins in Arabidopsis thaliana. Plant Cell Physiol 50(10):1801–14

    CAS  PubMed  Google Scholar 

  • Justice SS, Hunstad DA, Harper JR, Amy R, Duguay AR, Pinkner JS, Bann J, Frieden C, Silhavy TJ, Hultgren SJ (2005) Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J Bacteriol 187(22):7680–7686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaluarachchi H, Zhang JW, Zamble DB (2011) Escherichia coli SlyD, more than a Ni(II) reservoir. Biochemistry 50(50):10761–3

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–7

    CAS  PubMed  Google Scholar 

  • Kang B, Zhang Z, Wang L, Zheng L, Mao W, Li M, Wu Y, Wu P, Mo X (2013) OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J 74(1):86–97

    CAS  PubMed  Google Scholar 

  • Kiefhaber T, Quaas R, Hahn U, Schmid FX (1990) Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry 29:3053–3061

    CAS  PubMed  Google Scholar 

  • Kim IS, Yun HS, Kwak SH, Jin IN (2007) The physiological role of CPR1 in Saccharomyces cerevisiae KNU5377 against menadione stress by proteomics. J Microbiol 45(4):326–32

    CAS  PubMed  Google Scholar 

  • Kim SK, You YN, Park JC, Joung Y, Kim BG, Ahn JC, Cho HS (2012) The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. Plant Cell Rep 31(2):417–26

    CAS  PubMed  Google Scholar 

  • Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, KohsakaM AH (1987) FK-506, a novel immunosuppressant isolated from Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot 40:256–1265

    Google Scholar 

  • Kopriva S (2013) 12-Oxo-phytodienoic acid interaction with cyclophilin CYP20-3 is a benchmark for understanding retrograde signaling in plants. Proc Natl Acad Sci U S A 110(23):9197–8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kovalev N, Nagy PD (2013) Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly. J Virol 87(24):13330–42

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A (2013) Cyclophilins: proteins in search of function. Plant Signal Behav 8(1):e22734

    PubMed Central  PubMed  Google Scholar 

  • Laxa M, König J, Dietz KJ, Kandlbinder A (2007) Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. Biochem J 401(1):287–97

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Luan S (2010) AtFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis. Cell Res 20(3):357–66

    CAS  PubMed  Google Scholar 

  • Li H, Luan S (2011) The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes. Mol Plant 4(4):748–58

    CAS  PubMed  Google Scholar 

  • Li H, He Z, Lu G, Lee SC, Alonso J, Ecker JR, Luan S (2007) A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell 19(8):2403–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lima A, Lima S, Wong JH, Phillips RS, Buchanan BB, Luan S (2006) A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc Natl Acad Sci U S A 103(33):12631–6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lippuner V, Chou IT, Scott SV, Ettinger WF, Theg SM, Gasser CS (1994) Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana. J Biol Chem 269(11):7863–8

    CAS  PubMed  Google Scholar 

  • Liu J, Walsh CT (1990) Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc Natl Acad Sci U S A 87(11):4028–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luan S (1998) Immunophilins in animals and higher plants. Bot Bullet Acad Sini 39:217–223

    CAS  Google Scholar 

  • Ma X, Song L, Yang Y, Liu D (2013) A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. New Phytol 197(3):751–62

    CAS  PubMed  Google Scholar 

  • MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412

    CAS  PubMed  Google Scholar 

  • Magiri EN, Farchi-Pisanty O, Avni A, Breiman A (2006) The expression of the large rice FK506 binding proteins (FKBPs) demonstrate tissue specificity and heat stress responsiveness. Plant Sci 170:695–704

    CAS  Google Scholar 

  • Matouschek A, Rospert S, Schmid K, Glick BS, Schatz G (1995) Cyclophilin catalyzes protein folding in yeast mitochondria. Proc Natl Acad Sci U S A 92:6319–6323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mayr C, Richter K, Lilie H, Buchner J (2000) Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J Biol Chem 275(44):34140–6

    CAS  PubMed  Google Scholar 

  • Meiri D, Breiman A (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J 59:387–399

    CAS  PubMed  Google Scholar 

  • Meiri D, Tazat K, Cohen-Peer R, Farchi-Pisanty O, Aviezer-Hagai K, Avni A, Breiman A (2010) Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance. Plant Mol Biol 72:191–203

    CAS  PubMed  Google Scholar 

  • Nigam N, Singh A, Sahi C, Chandramouli A, Grover A (2008) Sumoconjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics 279:371–383

    CAS  PubMed  Google Scholar 

  • Page AP, MacNiven K, Hengartner MO (1996) Cloning and biochemical characterisation of the cyclophilin homologues from the free-living nematode Caenorhabditis elegans. Biochem J 317:179–185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, Esker AR, Tholl D, Cimini D, Ellerström M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB (2013) Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc Natl Acad Sci U S A 110(23):9559–64

    PubMed Central  CAS  PubMed  Google Scholar 

  • Partaledis JA, Berlin V (1993) The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum. Proc Natl Acad Sci U S A 90(12):5450–4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Partaledis JA, Fleming MA, Harding MW, Berlin V (1992) Saccharomyces cerevisiae contains a homolog of human FKBP-13, a membrane-associated FK506/rapamycin binding protein. Yeast 8(9):815

    CAS  PubMed  Google Scholar 

  • Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Söderberg L, Roepstorff P, von Heijne G, van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21(11):3623–40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Picken NC, Eschenlauer S, Taylor P, Page AP, Walkinshaw MD (2002) Structural and biological characterisation of the gut-associated cyclophilin B isoforms from Caenorhabditis elegans. J Mol Biol 322:15–25

    CAS  PubMed  Google Scholar 

  • Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA (2014) Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538(1):12–22

    CAS  PubMed  Google Scholar 

  • Quistgaard EM, Nordlund P, Löw C (2012) High-resolution insights into binding of unfolded polypeptides by the PPIase chaperone SlpA. FASEB J 26(10):4003–13

    CAS  PubMed  Google Scholar 

  • Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immuno 15:707–747

    CAS  Google Scholar 

  • Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith D (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. Eur Mol Biol Org J 22:1158–1167

    CAS  Google Scholar 

  • Romano PGN, Edvardsson A, Ruban AV, Andersson B, Vener AVV, Gray JE, Horton P (2004) Arabidopsis AtCYP20-2 is a light-regulated cyclophilintype peptidyl-prolyl cis-trans isomerase associated with the photosynthetic membranes. Plant Physiol 134:1244–1247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui JC, Bellec Y, Renne C, Miquel M, DaCosta M, Vignard J, Rochat C, Markham JE, Moreau P, Napier J, Faure JD (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber SL (1991) Chemistry and biology of immunophilins and their immunosuppressive ligands. Science 251:283–287

    CAS  PubMed  Google Scholar 

  • Schreiber SL, Crabtree GR (1992) The mechanism of action of cyclosporine A and FK-506. Immunp Tod 13:136–142

    CAS  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    CAS  PubMed  Google Scholar 

  • Seok MS, You YN, Park HJ, Lee SS, Aigen F, Luan S, Ahn JC, Cho HS (2014) AtFKBP16-1, a chloroplast lumenal immunophilin, mediates response to photosynthetic stress by regulating PsaL stability. Physiol Plant 150(4):620–31

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shangguan L, Kayesh E, Leng X, Sun X, Korir NK, Mu Q, Fang J (2013) Whole genome identification and analysis of FK506-binding protein family genes in grapevine (Vitis vinifera L.). Mol Biol Rep 40(6):4015–31

    CAS  PubMed  Google Scholar 

  • Shapiguzov A, Edvardsson A, Vener AV (2006) Profound redox sensitivity of peptidyl-prolyl isomerase activity in Arabidopsis thylakoid lumen. FEBS Lett 580:3671–3676

    CAS  PubMed  Google Scholar 

  • Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341:755–757

    CAS  PubMed  Google Scholar 

  • Sirpiö S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener AV, Scheller HV, Jensen PE, Haldrup A, Aro EM, 4 (2008) AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. Plant J 55:639–51

    PubMed  Google Scholar 

  • Sirpiö S, Holmström M, Battchikova N, Aro EM (2009) AtCYP20-2 is an auxiliary protein of the chloroplast NAD(P)H dehydrogenase complex. FEBS Lett 583(14):2355–8

    PubMed  Google Scholar 

  • Smith MR, Willmann MR, Wu G, Berardini TZ, Möller B, Weijers D, Poethig RS (2009) Cyclophilin 40 is required for microRNA activity in Arabidopsis. Proc Natl Acad Sci U S A 106(13):5424–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure JD (2006) The C terminus of the immunophilin PASTICCINO1 is required for plant development and for interaction with a NAC-like transcription factor. J Biol Chem 281:25475–25484

    CAS  PubMed  Google Scholar 

  • Stamnes MA, Shieh BH, Chuman L, Harris GL, Zuker CS (1991) The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell 65:219–227

    CAS  PubMed  Google Scholar 

  • Standaert RF, Galat A, Verdine GL, Schreiber SL (1990) Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature 346:671–674

    CAS  PubMed  Google Scholar 

  • Starzl TE, Klintmalm GB, Porter KA, Iwatsuki S, Schröter GP (1981) Liver transplantation with use of cyclosporin a and prednisone. N Engl J Med 305(5):266–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steimann B, Bruckner P, Superti-Furga A (1991) Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans isomerase. J Biol Chem 266:1299–1303

    Google Scholar 

  • Svarstad H, Bugge HC, Dhillion SS (2000) From Norway to Novartis: Cyclosporin from Tolypocladium inflatum in an open access bioprospecting regime. Biodiver Conser 9(11):1521–1541

    Google Scholar 

  • Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337:473–475

    CAS  PubMed  Google Scholar 

  • Trivedi DK, Yadav S, Vaid N, Tuteja N (2012) Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. Plant Signal Behav 7(12):1653–66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trupkin SA, Mora-García S, Casal JJ (2012) The cyclophilin ROC1 links phytochrome and cryptochrome to brassinosteroid sensitivity. Plant J 71(5):712–23

    CAS  PubMed  Google Scholar 

  • Vallon O (2005) Chlamydomonas immunophilins and parvulins: survey and critical assessment of gene models. Eukarot Cell 4(2):230–241

    CAS  Google Scholar 

  • Vasudevan D, Fu A, Luan S, Swaminathan K (2012) Crystal structure of Arabidopsis cyclophilin38 reveals a previously uncharacterized immunophilin fold and a possible autoinhibitory mechanism. Plant Cell 24(6):2666–74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vespa L, Vachon G, Berger FDR, Perazza D, Faure JD, Herzog M (2004) The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication. Plant Physiol 134:1283–1292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vittorioso P, Cowling R, Faure JD, Caboche M, Bellini C (1998) Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506- binding protein-like protein, has a dramatic effect on plant development. Mol Cell Biol 18:3034–3043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang WW, Ma Q, Xiang Y, Zhu SW, Cheng BJ (2012) Genome-wide analysis of immunophilin FKBP genes and expression patterns in Zea mays. Genet Mol Res 11(2):1690–700

    CAS  PubMed  Google Scholar 

  • Wang B, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S, Maeshima M, Friml J, Schulz A, Geisler M (2013) Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25(1):202–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson LK, Benton BM, Zhou S, Thorner J, Martin GS (1995) The yeast immunophilin Fpr3 is a physiological substrate of the tyrosine-specific phosphoprotein phosphatase Ptp1. J Biol Chem 270(42):25185–93

    CAS  PubMed  Google Scholar 

  • Wu G, Otegui MS, Spalding EP (2010) The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. Plant Cell 22(10):3295–304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao H, Jackson V, Lei M (2006) The FK506-binding protein, Fpr4, is an acidic histone chaperone. FEBS Lett 580(18):4357–64

    CAS  PubMed  Google Scholar 

  • Yu Y, Li Y, Huang G, Meng Z, Zhang D, Wei J, Yan K, Zheng C, Zhang L (2011) PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii. J Exp Bot 62:805–4817

    Google Scholar 

  • Yu Y, Zhang H, Li W, Mu C, Zhang F, Wang L, Meng Z (2012) Genome-wide analysis and environmental response profiling of the FK506-binding protein gene family in maize (Zea mays L.). Gene 498:212–222

    CAS  PubMed  Google Scholar 

  • Zhang JW, Leach MR, Zamble DB (2007) The peptidyl-prolyl isomerase activity of SlyD is not required for maturation of Escherichia coli hydrogenase. J Bacteriol 189(21):7942–4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Li B, Xu Y, Li H, Li S, Zhang D, Mao Z, Guo S, Yang C, Weng Y, Chong K (2013) The cyclophilin CYP20-2 modulates the conformation of BRASSINAZOLE-RESISTANT1, which binds the promoter of FLOWERING LOCUS D to regulate flowering in Arabidopsis. Plant Cell 25(7):2504–21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zuehlke AD, Johnson JL (2012) Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae. Genetics 191(3):805–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zydowsky LD, Etzkorn FA, Chang HY, Ferguson SB, Stolz LA, Ho SI, Walsh CT (1992) Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporine A binding and calcineurin inhibition. Prot Sci 1:1092–1099

    CAS  Google Scholar 

Download references

Acknowledgements

Research in AF’s lab is supported by funding from National Natural Science Foundation of China (No. 31270284) and BRJH of Shaanxi Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aigen Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shi, L., Fu, A. (2015). Plant Immunophilins: A Protein Family with Diverse Functions Beyond Protein Folding Activity. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2211-6_14

Download citation

Publish with us

Policies and ethics