Skip to main content

Spectrometry with Consumer-Quality CMOS Cameras

  • Protocol
  • First Online:
Mobile Health Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1256))

Abstract

Many modern spectrometric instruments use diode arrays, charge-coupled arrays, or CMOS cameras for detection and measurement. As portable or point-of-use instruments are desirable, one would expect that instruments using the cameras in cellular telephones and tablet computers would be the basis of numerous instruments. However, no mass market for such devices has yet developed. The difficulties in using megapixel CMOS cameras for scientific measurements are discussed, and promising avenues for instrument development reviewed. Inexpensive alternatives to use of the built-in camera are also mentioned, as the long-term question is whether it is better to overcome the constraints of CMOS cameras or to bypass them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rieke G (2003) Detection of light: from the ultraviolet to the submillimeter, 2 edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. Su J-C, Song S-F, Chen H-S (2011) Chromaticity stability of phosphor-converted white light-emitting diodes with an optical filter. Appl Opt 50:177–182

    Article  CAS  Google Scholar 

  3. Edmund Scientific diffraction grating page, http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=1490, (downloaded 12/27/2009)

  4. Rainbow Symphony Inc (2009) Rainbow Symphony Store Holographic Gratings. http://www.rainbowsymphonystore.com/scienanded1.html, (downloaded 12/27/2009)

  5. Coates J (2010) New miniaturized spectral measurement platforms covering the visible to the mid-IR, http://depts.washington.edu/cpac/Activities/Meetings/Fall/2010/documents/ NeSSI_Workshop_November_2010_Coates.pdf, (downloaded 10/7/2013)

  6. JDSU (2013) MicroNIR spectrometer, http://www.jdsu.com/en-us/Custom-Optics/Products/a-z-product-list/Pages/miniature-near-infrared-Spectrometer.aspx?rcode=micronir, (downloaded

  7. Holst GC, Lomheim TS (2007) CMOS/CCD sensors and camera systems. JCD, Winter Park, FL

    Google Scholar 

  8. rapidtables.com (2013) CMYK to RGB color conversion, http://www.rapidtables.com/convert/color/cmyk-to-rgb.htm, (downloaded 10/7/2013)

  9. Rasband W (2013) ImageJ: image processing and analysis in Java, http://rsbweb.nih.gov/ij/, (downloaded 10/8/2013)

  10. Scheeline A (2010) Focal point: teaching, learning, and using spectroscopy with commercial, off-the-shelf technology. Appl Spectrosc 64:256A–268A

    Article  CAS  Google Scholar 

  11. Wang SX, Zhou XJ (2008) Spectroscopic sensor on mobile phone. U.S. Patent 7,420,663, 2 Sept 2008

    Google Scholar 

  12. Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  CAS  Google Scholar 

  13. Whitesides GM (2009) Paper diagnostics – using first world science in developing economies. In: Pittsburgh conference on analytical chemistry and applied spectroscopy, Chicago, IL

    Google Scholar 

  14. Nelson M (2010) WinSpec: CCD spectrometer on a budget, http://www.materialintelligencellc.com/mitchnelson/WinSpec/, (downloaded 10/9/2013)

  15. Field SQ (2010) High resolution spectrograph. Make 24:58–61

    Google Scholar 

  16. Warren JW (2012) Public Lab DIY spectrometry kit, http://www.kickstarter.com/projects/jywarren/public-lab-diy-spectrometry-kit, (downloaded 10/9/2013)

  17. (2013) Public Lab website, http://publiclab.org/, (downloaded 10/9/2013)

  18. (2013) Public Lab Store, http://store.publiclab.org/products/desktop-spectrometry-kit, (downloaded 10/9/2013)

  19. (2013) Spectral Workbench, http://publiclab.org/wiki/spectral-workbench, (downloaded)

  20. PublicLab (2013) Spectral workbench DIY material analysis, http://spectralworkbench.org/, (downloaded 10/9/2013)

  21. Scheeline A (2010) Teaching in Hanoi: good mornings in Vietnam. Anal Bioanal Chem 398:2751–2753

    Article  CAS  Google Scholar 

  22. Kelley KD, Scheeline A (2009) Cell phone spectrophotometer. J Analyt Sci Digital Lib. entry 10059. Reprinted in m-science: sensing, computing, and dissemination, Cannesa E, Zennaro M (ed) (The Abdus Salam International Centre for Theoretical Physics, November, 2010)

    Google Scholar 

  23. Scheeline A, Bui TA (2011) Energy dispersion device. pending, 10/12/2011 (provisional), 8/28/2012 (utility), 4/18/2013 (published)

    Google Scholar 

  24. Kehoe E, Penn RL (2013) Introducing colorimetric analysis with camera phones and digital cameras: an activity for high school or general chemistry. J Chem Ed 90:1191–1195

    Article  CAS  Google Scholar 

  25. Castillo J, Gutierrez H, Vitta Y, Martinez M, Fernandez A (2007) Development and testing of multi-well plates absorbance reader for clinical analysis using inexpensive web-cam. Proc SPIE Int’l Soc Opt Eng. 6755:67550W-67551–67550W-67559

    Google Scholar 

  26. Ahlberg E (2010) Can you analyze me now? Cell phones bring spectroscopy to the classroom, http://www.news.illinois.edu/news/10/1007scheeline_spectrophotometry.html, (downloaded 10/7/2010)

  27. Raju L (2011) Development of an Inexpensive Spectrophotometer and a Matlab Spectral Analysis Program. http://spie.org/Documents/Courses/Education_Outreach/Lakshmi-Raju-PR-2013.pdf; http://asef.uah.edu/Documents/2011%20ASEF%20Special%20Awards.pdf, (downloaded 10/13/2013)

  28. Raju L (2012) Development of a Low Cost Infrared Spectrophotometer and a Matlab Program to Detect Terrestrial and Extraterrestrial Water Vapor. http://www.uab.edu/carsef/2012resuilts; http://www.googlelunarxprize.org/teams/jurban/blog/more-lakshmi-rajus-spectrophotometer, (downloaded 10/13/2013)

  29. da Silva APM, de Oliveira PB, Bandini TB, Barreto AG Jr, de Sena RC, Cajaiba de Silva JF (2013) Low-cost system based on image analysis to determine solubility curves. Sens Actuat B 177:1074–1077

    Article  Google Scholar 

  30. Sena RC, Soares M, Pereira MLO, Silva RCD, Rosário FF, Silva JFC (2011) A simple method based on the application of a CCD camera as a sensor to detect low concentrations of barium sulfate in suspension. Sensors 11:864–875

    Article  Google Scholar 

  31. Iqbal Z, Eriksson M (2013) Classification and quantitative optical analysis of liquid and solid samples using a mobile phone as illumination source and detector. Sens Actuat B 185:354–362

    Article  CAS  Google Scholar 

  32. Oncescu V, O'Dell D, Erickson D (2013) Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13:3232–3238

    Article  CAS  Google Scholar 

  33. Hoving W (2013) Environmental monitoring/spectroscopy: crowd-sourced measurements offer a unique view of pollution’s effects. BioOptics World, vol 6. http://www.bioopticsworld.com/articles/print/volume-6/issue-5/features/environmental-monitoring-spectroscopy-crowd-sourced-measurements-offer-a-unique-view-of-pollution-s-effects.html

  34. University L (2013) Measuring particulates with your smartphone, http://www.research.leiden.edu/news/measuring-particulates-with-your-smartphone.html, (downloaded 10/10/2013)

  35. White JD, Scholten RE (2012) Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor. Rev Sci Instrum 83:113104

    Article  Google Scholar 

  36. Subriddetchkajorn S, Intaravanne Y (2012) Home-made N-channel fiber-optic spectrometer from a web camera. Appl Spectrosc 66:1156–1162

    Article  Google Scholar 

  37. Lima MB, Andarde SE, Barreto IS, Almeida LF, Araujo MCU (2013) A digital image-based micro flow batch analyzer. Microchem J 106:238–243

    Article  CAS  Google Scholar 

  38. Balsam J, Bruck HA, Kostov Y, Rasooly A (2012) Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam. Sens Actuat B 171–172:141–147

    Article  Google Scholar 

  39. Horlick G (1975) Reduction of quantization effects by time averaging with random added noise. Anal Chem 47:352–354

    Article  CAS  Google Scholar 

  40. Belchamber RM, Horlick G (1981) Use of added random noise to improve bit-resolution in digital signal averaging. Talanta 28:547–548

    Article  CAS  Google Scholar 

  41. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O et al (2010) Lensfree microscopy on a cell-phone. Lab Chip 10:1787–1792

    Article  CAS  Google Scholar 

  42. Zhu H, Yaglidere O, Su T, Tseng D, Ozcan A (2010) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322

    Article  Google Scholar 

  43. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12:2678–2686

    Article  CAS  Google Scholar 

  44. Ozcan A (2013) Ozcan Research Group Refereed Journal Publications, http://innovate.ee.ucla.edu/refereed-journal-publications.html, (downloaded 10/09/2013)

  45. Titlow JP (2011) Why user-customized products are the future of business (for real this time), http://readwrite.com/2011/04/15/user-customized-products-future-of-business#awesm=~okg94zZ2kkPR4l, (downloaded 10/14/2013)

  46. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703

    Article  CAS  Google Scholar 

  47. Lillehoj PB, Huang M-C, Truong N, Ho C-M (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–2955

    Article  CAS  Google Scholar 

  48. Ingle JD, Crouch SR (1972) Evaluation of precision of quantitative molecular absorption spectrometric measurements. Anal Chem 44:1375–1386

    Article  CAS  Google Scholar 

  49. Rothman LD, Crouch SR, Ingle JD (1975) Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry. Anal Chem 47:1226–1233

    Article  CAS  Google Scholar 

  50. Ingle JD, Crouch SR (1988) Spectrochemical analysis. Benjamin, New York

    Google Scholar 

  51. Skoog DA, Holler FJ, Crouch SR (2007) Principles of instrumental analysis. Thomson Higher Education, Belmont, CA

    Google Scholar 

  52. Inc. HS (2013) VS7000-PDA Miniature PDA Spectrometer, http://www.horiba.com/fileadmin/uploads/Scientific/Documents/OEM/VS-7000-PDA-2013.pdf, (downloaded 12/24/2013)

  53. Hsu W-H, Sainz MA, Coleman DM (1989) An aberration-corrected time- and spatially-resolved spectrometer for studies of transient discharges. Spectrochim Acta 44B:109–121

    Article  CAS  Google Scholar 

  54. Miller DL, Scheeline A (1993) A computer program for the collection, reduction, and analysis of echelle spectra. Spectrochim Acta 48B:E1053–E1062

    Article  CAS  Google Scholar 

  55. Sadler DA, Littlejohn D, Perkins CV (1995) An automatic wavelength calibration procedure for use with an optical spectrometer and array detector. J Anal Atom Spec 10:253–257

    Article  CAS  Google Scholar 

  56. Lane DW (2012) X-ray imaging and spectroscopy using low cost COTS CMOS sensors. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 284:29–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work reported here was supported, in part, by NIH Grants U01DE017855 (Bau, Mauk) and K25AI099160 (Liu), and a grant from the Commonwealth of Pennsylvania’s Ben Franklin Technology Development Authority through the Ben Franklin Technology Partners of Southeastern Pennsylvania (Bau, Sadik).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Scheeline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scheeline, A. (2015). Spectrometry with Consumer-Quality CMOS Cameras. In: Rasooly, A., Herold, K. (eds) Mobile Health Technologies. Methods in Molecular Biology, vol 1256. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2172-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2172-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2171-3

  • Online ISBN: 978-1-4939-2172-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics