Skip to main content

A Primer of Methods in Biobehavioral Research: Improving a Study’s Design, Analysis, and Write Up

  • Protocol
  • First Online:
The Maze Book

Part of the book series: Neuromethods ((NM,volume 94))

Abstract

This chapter describes several best practices for collecting, storing, analyzing, and writing up data generated from biobehavioral research. The goal is to provide a foundation for researchers who wish to consider more advanced topics of experimental design and statistical inference in their work. The principles considered here are general and apply to basic biobehavioral research using a variety of different model systems and animals. Common issues and pitfalls are discussed, and considerations draw on both traditional principles and newer ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter often refers to control and treatment groups for ease of presentation. Please recognize that these statements also apply to two, or in some cases more, different treatment groups, none of which may serve as a control group in a specific experiment.

  2. 2.

    In cases in which the researcher can make a strong argument that the variable could not theoretically be affected by the manipulation (e.g., gender, age, but not neuronal physiological properties), the variable can be assessed after the manipulation.

  3. 3.

    Spreadsheets are convenient and normally adequate for this task. Note that they typically have fewer built-in error checks on the data, permit fewer statistical calculations, and have fewer graphing capabilities. This limitation can make the data checking process more error prone. Error checking features become increasingly important as the size of the dataset increases.

  4. 4.

    In Greek mythology, Procrustes was a host who invited his guests to rest in a special bed whose length exactly matched that of whomever would lie down in it. When the guest laid down in the bed, Procrustes would stretch the guest on a rack or chop off his legs so that he would precisely fit the bed. Chopping up perfectly good interval- or ratio-level variables is another Procrustian practice that is good neither for humans nor data.

  5. 5.

    When two independent groups (unrelated subjects) are being compared, either ANOVA or a t-test may be used. In this case, the F for the ANOVA and t for the t-test produce equivalent results, F = t 2, so the p-values of the two tests will match exactly. With more than two groups, only ANOVA can be performed.

  6. 6.

    As discussed briefly later, when the dependent variable is the count of the number of behaviors performed by the subject, alternative analyses (e.g., Poisson regression) may be preferred. As a rule of thumb for count variables, if the means of each condition are greater than 10, then traditional analysis of variance is regarded as appropriate.

  7. 7.

    The average effect can be interpretable even when there is an interaction in a special case, when the direction of the treatment effects is consistent for all levels of the moderator variable. For example, consider the present significant treatment effect modified by a significant treatment × hemisphere interaction. If follow-up tests showed that the mean of the high-dose condition was greater than the mean of low-dose condition, which, in turn, was greater than the mean of the vehicle (control) condition within both the left and the right hemispheres, the average effect of treatment provides important information. The interaction changes the magnitude, but not the direction of the effects.

References

  1. American Psychological Association (2010) Publication manual of the American Psychological Association, 6th edn. American Psychological Association, Washington, DC

    Google Scholar 

  2. Baraldi AN, Enders CK (2010) An introduction to modern missing data analyses. J Sch Psychol 48(1):5–37. doi:10.1016/j.jsp.2009.10.001

    Article  PubMed  Google Scholar 

  3. Barnett V, Lewis T (1994) Outliers in statistical data, vol 3. Wiley, New York, NY

    Google Scholar 

  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):11, Retrieved from http://www.jstor.org.ezproxy2.library.arizona.edu/stable/2346101

    Google Scholar 

  5. Borenstein M (2009) Effect sizes for continuous data. In: Cooper HM, Hedges LV, Valentine JC (eds) The handbook of research synthesis and meta-analysis, 2nd edn. Russell Sage, New York, NY, p 615

    Google Scholar 

  6. Brady JV (1958) Ulcers in “executive” monkeys. Sci Am 199(3):9. doi:10.1038/scientificamerican1058-95

    Google Scholar 

  7. Brown MB, Forsythe AB (1974) Robust tests for the equality of variances. J Am Stat Assoc 69(346):3. doi:10.1080/01621459.1974.10482955

    Article  Google Scholar 

  8. Cleveland WS (1993) Visualizing data. Hobart Press, Lafayette, IN

    Google Scholar 

  9. Cleveland WS (1994) The elements of graphing data, 2nd edn. Hobart Press, Lafayette, IN

    Google Scholar 

  10. Cliff N (1996) Ordinal methods for behavioral data analysis. Erlbaum, Mahwah, NJ

    Google Scholar 

  11. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  12. Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple regression/correlation analysis for the behavioral sciences, 3rd edn. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  13. Cook TD, Campbell DT (1979) Quasi-experimentation: design & analysis issues for field settings. Rand McNally College Publishing Company, Chicago, IL

    Google Scholar 

  14. Coxe S, West SG, Aiken LS (2009) The analysis of count data: a gentle introduction to Poisson regression and its alternatives. J Pers Assess 91(2):15. doi:10.1080/00223890802634175

    Article  Google Scholar 

  15. Cumming G (2012) Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. Routledge, New York, NY

    Google Scholar 

  16. Cumming G, Finch S (2005) Inference by eye: confidence intervals and how to read pictures of data. Am Psychol 60(2):10. doi:10.1037/0003-066X.60.2.170

    Article  Google Scholar 

  17. Curran-Everett D (2013) Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ 37(3):213–219. doi:10.1152/advan.00053.2013

    Article  PubMed  Google Scholar 

  18. Curran-Everett D, Benos DJ (2007) Guidelines for reporting statistics in journals published by the American Physiological Society: the sequel. Adv Physiol Educ 31(4):295–298. doi:10.1152/advan.00022.2007

    Article  PubMed  Google Scholar 

  19. Dean A, Voss D (1999) Design and analysis of experiments. Springer, New York, NY

    Book  Google Scholar 

  20. Denenberg VH (1996) A primer for behavioral research. Ment Retard Dev Disabil Res Rev 2(4):7. doi:10.1002/(SICI)1098-2779(1996)2:4<209::AID-MRDD4>3.0.CO;2-L

    Article  Google Scholar 

  21. Edwards JR (2001) Ten difference score myths. Organ Res Methods 4(3):22. doi:10.1177/109442810143005

    Article  Google Scholar 

  22. Eich E (2014) Business not as usual. Psychol Sci 25:3. doi:10.1177/0956797613512465

    Article  PubMed  Google Scholar 

  23. Enders CK (2010) Applied missing data analysis. Guilford Press, New York, NY

    Google Scholar 

  24. Fleiss J, Berlin J (2009) Effect sizes for dichotomous data. In: Cooper HM, Hedges LV, Valentine JC (eds) The handbook of research synthesis and meta-analysis, 2nd edn. Russell Sage, New York, NY, p 615

    Google Scholar 

  25. Franz VH (2007) Ratios: a short guide to confidence limits and proper use [7-6-14]. ARXIV 60. doi:2007arXiv0710.2024F

    Google Scholar 

  26. Franz VH, Loftus GR (2012) Standard errors and confidence intervals in within-subjects designs: generalizing and avoiding the biases of alternative accounts. Psychon Bull Rev 19(3):395–404. doi:10.3758/s13423-012-0230-1

    Article  PubMed Central  PubMed  Google Scholar 

  27. Harlow LL, Mulaik SA, Steiger JH (1997) What if there were no significance tests? Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  28. Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York, NY

    Book  Google Scholar 

  29. Holland PW (1986) Statistics and causal inference. J Am Stat Assoc 81(396):15. doi:10.1080/01621459.1986.10478354

    Google Scholar 

  30. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  31. Hsu JC (1996) Multiple comparisons: theory and methods. Chapman & Hall, New York, NY

    Book  Google Scholar 

  32. Huitema BE (2011) The analysis of covariance and alternatives: statistical methods for experiments, quasi-experiments, and single-case studies, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  33. Hyde LA, Hoplight BJ, Denenberg VH (1998) Water version of the radial-arm maze: learning in three inbred strains of mice. Brain Res 785(2):236–244. doi:10.1016/S0006-8993(97)01417-0

    Article  CAS  PubMed  Google Scholar 

  34. Kelley K (2007) Methods for the behavioral, educational, and social sciences: an R package. Behav Res Methods 39(4):979–984. doi:10.3758/BF03192993

    Article  PubMed  Google Scholar 

  35. Kelley K, Maxwell SE (2012) Sample size planning. In: Cooper HM, American Psychological Association (eds) APA handbook of research methods in psychology. American Psychological Association, Washington, DC

    Google Scholar 

  36. Keppel G, Wickens TD (2004) Design and analysis: a researcher’s handbook, 4th edn. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  37. Levin JR, Serlin RC, Seaman MA (1994) A controlled, powerful multiple-comparison strategy for several situations. Psychol Bull 115(1):153–159. doi:10.1037//0033-2909.115.1.153

    Article  Google Scholar 

  38. Levine TR, Hullett CR (2002) Eta squared, partial eta squared, and misreporting of effect size in communication research. Hum Commun Res 28(4):612–625. doi:10.1111/j.1468-2958.2002.tb00828.x

    Article  Google Scholar 

  39. Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  40. Loftus GR, Masson ME (1994) Using confidence intervals in within-subject designs. Psychon Bull Rev 1(4):476–490. doi:10.3758/BF03210951

    Article  CAS  PubMed  Google Scholar 

  41. Long JS (1997) Regression models for categorical and limited dependent variables. Sage Publications, Thousand Oaks, CA

    Google Scholar 

  42. MacCallum RC, Zhang S, Preacher KJ, Rucker DD (2002) On the practice of dichotomization of quantitative variables. Psychol Methods 7(1):19–40. doi:10.1037/1082-989X.7.1.19

    Article  PubMed  Google Scholar 

  43. MacKinnon D (2008) Introduction to statistical mediation analysis. Routledge, New York, NY

    Google Scholar 

  44. Maxwell SE, Delaney HD (2004) Designing experiments and analyzing data, 2nd edn. Psychological Press, New York, NY

    Google Scholar 

  45. Olejnik S, Algina J (2000) Measures of effect size for comparative studies: applications, interpretations, and limitations. Contemp Educ Psychol 25(3):241–286. doi:10.1006/ceps.2000.1040

    Article  PubMed  Google Scholar 

  46. Olejnik S, Algina J (2003) Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods 8(4):13. doi:10.1037/1082-989X.8.4.434

    Article  Google Scholar 

  47. Osborne J, Waters E (2002) Four assumptions of multiple regression that researchers should always test. Pract Assess Res Eval 8(2):1–9, Retrieved from http://ericae.net/pare/getvn.asp?v=8&n=2

    Google Scholar 

  48. Rosenthal R (1991) Meta-analytic procedures for social research, vol 6 Sage Publications, Newbury Park, CA

    Book  Google Scholar 

  49. Rosenthal R, Rosnow RL (1985) Contrast analysis: focused comparisons in the analysis of variance. Cambridge University Press, New York, NY

    Google Scholar 

  50. Rosopa PJ, Schaffer MM, Schroeder AN (2013) Managing heteroscedasticity in general linear models. Psychol Methods 18(3):16. doi:10.1037/a0032553

    Article  Google Scholar 

  51. Ruxton GD, Colegrave N (2011) Experimental design for the life sciences, 3rd edn. Oxford University Press, Oxford, NY

    Google Scholar 

  52. Schwarzkopf DS, De Haas B, Rees G (2012) Better ways to improve standards in brain-behavior correlation analysis. Front Hum Neurosci 6:200. doi:10.3389/fnhum.2012.00200

    Article  PubMed Central  PubMed  Google Scholar 

  53. Seber GAF, Lee AJ (2003) Linear regression analysis, 2nd edn. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  54. Shadish WR, Cook TD, Campbell DT (2001) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin, Boston, MA

    Google Scholar 

  55. Shiffler RE (1988) Maximum Z scores and outliers. Am Stat 42(1):11. doi:10.1080/00031305.1988.10475530

    Google Scholar 

  56. Stevens JP (2007) Intermediate statistics: a modern approach. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  57. Stevens SS (1946) On the theory of scales of measurement. Science 103(2684):677–680. doi:10.1126/science.103.2684.677

    Article  Google Scholar 

  58. Swinscow TDV, Campbell MJ (2002) Statistics at square one, 11th edn. BMJ Books, London

    Google Scholar 

  59. Thalheimer W, Cook S (2002) How to calculate effect sizes from published research: a simplified methodology. 9. Retrieved from http://www.work-learning.com/welcome.html

  60. Vargha A, Delaney HD (1998) The Kruskal-Wallis test and stochastic homogeneity. J Educ Behav Stat 23(2):22. doi:10.3102/10769986023002170

    Article  Google Scholar 

  61. Velleman PF, Wilkinson L (1993) Nominal, ordinal, interval, and ratio typologies are misleading. Am Stat 47(1):7. doi:10.1080/00031305.1993.10475938

    Google Scholar 

  62. Warner RM (2008) Applied statistics: from bivariate through multivariate techniques. Sage Publications, Los Angeles, CA

    Google Scholar 

  63. Weisberg S (2005) Applied linear regression, 3rd edn. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  64. West SG, Cham H, Liu Y (2014) Causal inference and generalization in field settings: experimental and quasi-experimental designs. In: Reis HT, Judd CM (eds) Handbook of research methods in personality and social psychology, 2nd edn. Cambridge University Press, New York, NY, pp 49–80

    Google Scholar 

  65. West SG, Thoemmes F (2010) Campbell’s and Rubin’s perspectives on causal inference. Psychol Methods 15(1):18–37. doi:10.1037/a0015917

    Article  PubMed  Google Scholar 

  66. Westfall PH, Tobias RD, Wolfinger RD (2011) Multiple comparisons and multiple tests using SAS, 2nd edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  67. Wilcox RR (2012) Introduction to robust estimation and hypothesis testing, 3rd edn. Academic, Boston, MA

    Google Scholar 

  68. Wilcox RR (2012) Modern statistics for the social and behavioral sciences: a practical introduction. CRC Press, Boca Raton, FL

    Google Scholar 

  69. Wilcox RR, Keselman HJ (2003) Modern robust data analysis methods: measures of central tendency. Psychol Methods 8(3):254–274. doi:10.1037/1082-989X.8.3.254

    Article  PubMed  Google Scholar 

  70. Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design, 3rd edn. McGraw-Hill, New York, NY

    Google Scholar 

  71. Yang M, Maxwell SE (2014) Treatments effects in randomized longitudinal dropout. Psychol Methods 19(2):188–210

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Bimonte-Nelson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Talboom, J.S., West, S.G., Bimonte-Nelson, H.A. (2015). A Primer of Methods in Biobehavioral Research: Improving a Study’s Design, Analysis, and Write Up. In: Bimonte-Nelson, H. (eds) The Maze Book. Neuromethods, vol 94. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2159-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2159-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2158-4

  • Online ISBN: 978-1-4939-2159-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics