Skip to main content

Developing a Systems-Based Understanding of Hematopoietic Stem Cell Cycle Control

  • Chapter
  • First Online:
A Systems Biology Approach to Blood

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 844))

Abstract

To maintain hematologic homeostasis, hematopoietic stem cells (HSCs) undergo multiple rounds of cell division throughout their lives. Under steady-state conditions, adult HSCs are relatively quiescent and reside primarily in hypoxic bone marrow niches. In response to physiologic stimuli, normal HSCs either reenter the cell division cycle or remain in quiescence. A large body of work has focused on understanding the mechanistic underpinnings balancing differentiation against self-renewal programs in cycling HSCs. Numerous reports from genetically engineered mouse models harboring mutations in key pathways governing proliferation control, DNA damage responses, and metabolic regulation indicate the critical roles these processes play in determining HSC self-renewing versus blood-lineage-reconstituting divisions. In this chapter, we integrate these findings and highlight the cellular networks that control HSC function and fitness by regulating HSC cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature reviews. Immunology. 2006;6:93–106.

    CAS  PubMed  Google Scholar 

  2. Catlin SN, Busque L, Gale RE, Guttorp P, Abkowitz JL. The replication rate of human hematopoietic stem cells in vivo. Blood. 2011;117:4460–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shepherd BE, et al. Hematopoietic stem-cell behavior in nonhuman primates. Blood. 2007;110:1806–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.

    Article  CAS  PubMed  Google Scholar 

  5. Kim I, He S, Yilmaz OH, Kiel MJ, Morrison SJ. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood. 2006;108:737–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yilmaz OH, Kiel MJ, Morrison SJ. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood. 2006;107:924–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Domen J, Weissman IL. Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol Med Today. 1999;5:201–8.

    Article  CAS  PubMed  Google Scholar 

  8. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A. 1999;96:3120–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med. 2005;202:1599–611.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wilson A, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135:1118–29.

    Article  CAS  PubMed  Google Scholar 

  11. Pietras EM, Warr MR, Passegue E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011;195:709–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Park IK, et al. Bmi−1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    Article  CAS  PubMed  Google Scholar 

  13. Sherr CJ. The INK4a/ARF network in tumour suppression. Nature reviews. Mol Cell Biol. 2001;2:731–7.

    CAS  Google Scholar 

  14. Lessard J, Sauvageau G. Bmi−1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.

    Article  CAS  PubMed  Google Scholar 

  15. Oguro H, et al. Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J Exp Med. 2006;203:2247–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lacorazza HD, Nimer SD. The emerging role of the myeloid Elf−1 like transcription factor in hematopoiesis. Blood Cell Mol Dis. 2003;31:342–50.

    Article  CAS  Google Scholar 

  17. Lacorazza HD, et al. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell. 2006;9:175–87.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng T, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287:1804–8.

    Article  CAS  PubMed  Google Scholar 

  19. Hock H, et al. Gfi−1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature. 2004;431:1002–7.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto A, et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2011;9:262–71.

    Article  CAS  PubMed  Google Scholar 

  21. Zou P, et al. p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell. 2011;9:247–61.

    Article  CAS  PubMed  Google Scholar 

  22. Viatour P, et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell. 2008;3:416–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yilmaz OH, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441:475–82.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441:518–22.

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, et al. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp Hematol. 2008;36:1236–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu Y, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell. 2009;4:37–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. TeKippe M, Harrison DE, Chen J. Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp Hematol. 2003;31:521–7.

    Article  CAS  PubMed  Google Scholar 

  28. Milyavsky M, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell. 2010;7:186–97.

    Article  CAS  PubMed  Google Scholar 

  29. Yu H, Yuan Y, Shen H, Cheng T. Hematopoietic stem cell exhaustion impacted by p18 INK4 C and p21 Cip1/Waf1 in opposite manners. Blood. 2006;107:1200–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4 C. Nat Cell Biol. 2004;6:436–42.

    Article  CAS  PubMed  Google Scholar 

  31. Thorsteinsdottir U, Sauvageau G, Humphries RK. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood. 1999;94:2605–12.

    CAS  PubMed  Google Scholar 

  32. Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell. 2002;109:39–45.

    Article  CAS  PubMed  Google Scholar 

  33. Antonchuk J, Sauvageau G, Humphries RK. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol. 2001;29:1125–34.

    Article  CAS  PubMed  Google Scholar 

  34. Santaguida M, et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell. 2009;15:341–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104:5431–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110:3056–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest. 2003;112:126–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Simsek T, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7:380–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Takubo K, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7:391–402.

    Article  CAS  PubMed  Google Scholar 

  40. Gan B, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468:701–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gurumurthy S, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468:659–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468:653–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nature reviews. Cancer. 2009;9:563–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357–68.

    Article  CAS  PubMed  Google Scholar 

  45. Ito K, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18:1350–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal. 2008;10:1923–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Meyn MS. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res. 1995;55:5991–6001.

    CAS  PubMed  Google Scholar 

  48. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nature reviews. Cancer. 2003;3:155–68.

    CAS  PubMed  Google Scholar 

  49. Mohrin M, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 2010;7:174–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ito K, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431:997–1002.

    Article  CAS  PubMed  Google Scholar 

  51. Ito K, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12:446–51.

    Article  CAS  PubMed  Google Scholar 

  52. Miyamoto K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    Article  CAS  PubMed  Google Scholar 

  53. Yalcin S, et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem. 2008;283:25692–705.

    Article  CAS  PubMed  Google Scholar 

  54. Tothova Z, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128:325–39.

    Article  CAS  PubMed  Google Scholar 

  55. Rossi DJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102:9194–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Minella AC, Clurman BE. Mechanisms of tumor suppression by the SCF(Fbw7). Cell Cycle. 2005;4:1356–9. (Georgetown, Texas)

    Article  CAS  PubMed  Google Scholar 

  57. Matsuoka S, et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 2008;22:986–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Thompson BJ, et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med. 2008;205:1395–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Onoyama I, et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med. 2007;204:2875–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Park Y, Gerson SL. DNA repair defects in stem cell function and aging. Annu Rev Med. 2005;56:495–508.

    Article  CAS  PubMed  Google Scholar 

  61. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  62. Rossi DJ, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447:725–9.

    Article  CAS  PubMed  Google Scholar 

  63. Nijnik A, et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature. 2007;447:686–90.

    Article  CAS  PubMed  Google Scholar 

  64. Janzen V, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443:421–6.

    CAS  PubMed  Google Scholar 

  65. Nygren JM, Bryder D. A novel assay to trace proliferation history in vivo reveals that enhanced divisional kinetics accompany loss of hematopoietic stem cell self-renewal. PloS ONE. 2008;3:e3710.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nature reviews. Mol Cell Biol. 2007;8:703–13.

    CAS  Google Scholar 

  67. Attema JL, Pronk CJ, Norddahl GL, Nygren JM, Bryder D. Hematopoietic stem cell ageing is uncoupled from p16 INK4 A-mediated senescence. Oncogene. 2009;28:2238–43.

    Article  CAS  PubMed  Google Scholar 

  68. Bartkova J, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.

    Article  CAS  PubMed  Google Scholar 

  69. Mallette FA, Gaumont-Leclerc MF, Ferbeyre G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev. 2007;21:43–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Allsopp RC, Cheshier S, Weissman IL. Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med. 2001;193:917–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wang J, et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell. 2012;148:1001–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01HL098608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex C. Minella MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siu, K., Minella, A. (2014). Developing a Systems-Based Understanding of Hematopoietic Stem Cell Cycle Control. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_9

Download citation

Publish with us

Policies and ethics