Skip to main content

Realizing Accelerated Cost-Effective Distributed RAID

  • Chapter
  • First Online:
Handbook on Data Centers

Abstract

The deluge of data from scientific instruments (SNS, LHC), experiments (DZero) and observations (SDSS) will soon surpass the ability of storage systems to store and retrieve data in a reliable and cost-effective manner. While the capacity, performance and the mean time to failure (MTTF) of a single disk has been improving, large-scale storage systems and parallel file systems (PFS) can comprise tens of thousands of drives, thus bringing down the overall mean time to data loss (MTTDL) of the entire system to unacceptably low levels. For example, the Lustre-based Spider PFS of the Jaguar supercomputer (No. 3 machine on the Top500 list) comprises 10,000+ disks. An exaflop machine in 2018 is projected to host hundreds of thousands of drives to support the desired I/O throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Context funneling uses advanced features of the Fermi architecture to execute concurrent kernels, which must be launched from the same context [37].

References

  1. “Spallation Neutron Source,” \textsfhttp://www.sns.gov/, 2008.

  2. Conseil Européen pour la Recherche Nucléaire (CERN), “LHC– the large hadron collider,” July 2007, http://lhc.web.cern.ch/lhc/.

  3. B. Abbott, A. Baranovski, M. Diesburg, G. Garzoglio, T. Kurca, and P. Mhashilkar, “Dzero data-intensive computing on the open science grid,” Journal of Physics: Conference Series, vol. 119, 2008.

    Google Scholar 

  4. “Sloan digital sky survey,” http://www.sdss.org, 2005.

  5. “Top500 supercomputer sites,” http://www.top500.org/.

  6. S. Oral, F. Wang, D. Dillow, G. M. Shipman, R. Miller, and O. Drokin, “Efficient object storage journaling in a distributed parallel file system,” in USENIX Conference on File and Storage Technologies, 2010, pp. 143–154.

    Google Scholar 

  7. Brooke Crothers, “DARPA 'exascale` supercomputer in the works,” August 2010, http://news.cnet.com/8301-13924'_3-20013088-64.html.

  8. Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. Pike, J. Cobb, and F. Mueller, “Optimizing center performance through coordinated data staging, scheduling and recovery,” in Proceedings of Supercomputing 2007 (SC07): Int’l Conference on High Performance Computing, Networking, Storage a nd Analysis, Jun. 2007.

    Google Scholar 

  9. M. D. R. Alex Osuna, Siebo Friesenborg, “Considerations for raid-6 availability and format/rebuild performance on the ds5000,” 2009, document Number: REDP-4484-00.

    Google Scholar 

  10. B & H Foto & Electronics Corp., “Active Storage 16TB ActiveRAID Hard Drive Array,” 2011, http://www.bhphotovideo.com/c/product/697437-REG/Active_Storage_AC16SFC02_16TB_ActiveRAID_Hard_Drive.html.

  11. J. Michalakes and M. Vachharajani, “Gpu acceleration of numerical weather prediction,” in IEEE International Symposium on Parallel and Distributed Processing (IPDPS), april 2008, pp. 1–7.

    Google Scholar 

  12. C. Trapnell and M. C. Schatz, “Optimizing data intensive gpgpu computations for dna sequence alignment,” Parallel Comput., vol. 35, pp. 429–440, August 2009.

    Article  Google Scholar 

  13. M. Fatica, “Accelerating linpack with cuda on heterogenous clusters,” in Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, ser. GPGPU-2. New York, NY, USA: ACM, 2009, pp. 46–51.

    Google Scholar 

  14. T. D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon, “Biomedical image analysis on a cooperative cluster of gpus and multicores,” in Proceedings of the 22nd annual international conference on Supercomputing, ser. ICS '08. New York, NY, USA: ACM, 2008, pp. 15–25.

    Google Scholar 

  15. M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos, “A capabilities-aware framework for using computational accelerators in data-intensive computing,” J. Parallel Distrib. Comput., vol. 71, pp. 185–197, February 2011.

    Google Scholar 

  16. M. Curry, A. Skjellum, H. Ward, and R. Brightwell, “Arbitrary dimension reed-solomon coding and decoding for extended raid on gpus,” in Petascale Data Storage Workshop, 2008. PDSW '08. 3rd, nov. 2008.

    Google Scholar 

  17. D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, and N. Amenta, “Real-time parallel hashing on the gpu,” ACM Trans. Graph., vol. 28, pp. 15–4:1–154:9, December 2009.

    Google Scholar 

  18. G. I. of Technology, “Keenland,” 2010, http://keeneland.gatech.edu/.

  19. Damon Poeter, “Cray’s Titan Supercomputer for ORNL Could Be World’s Fastest,” 2011, http://www.pcmag.com/article2/0,2817,2394515,00.asp.

  20. M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos, “Designing accelerator-based distributed systems for high performance,” in Proc. IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID'2010), Melbourne, Australia, May. 2010.

    Google Scholar 

  21. M. A. Clark, “Qcd on gpus: cost effective supercomputing,” 2009. [Online]. Available: http://lattice.github.com/quda/

  22. NVIDIA Corporation, “Science & Education,” 2011, http://www.nvidia.com/object/nvidia_userful_success.html.

  23. Sun Microsystems, Inc., “Lustre file system - High-performance storage architecture and scalable cluster file system,” 2007.

    Google Scholar 

  24. B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka, and B. Zhou, “Scalable performance of the panasas parallel file system,” in Proceedings of the 6th USENIX Conference on File and Storage Technologies, ser. FAST'08. Berkeley, CA, USA: USENIX Association, 2008, pp. 2:1–2:17.

    Google Scholar 

  25. Intel Corporation, “Intel® Microarchitecture Codename Sandy Bridge,” 2011, http://www.intel.com/technology/architecture-silicon/2ndgen/index.htm.

  26. R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Block-level raid is dead,” in Proceedings of the 2nd USENIX conference on Hot topics in storage and file systems, ser. HotStorage'10. Berkeley, CA, USA: USENIX Association, 2010, pp. 4–4.

    Google Scholar 

  27. I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Blaum and R. Roth, “New array codes for multiple phased burst correction,” Information Theory, IEEE Transactions on, vol. 39, no. 1, pp. 66–77, jan 1993.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. S. Plank, “The raid-6 liberation codes,” in Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST). Berkeley, CA, USA: USENIX Association, 2008, pp. 7:1–7:14.

    Google Scholar 

  30. J. S. Plank and L. Xu, “Optimizing cauchy reed-solomon codes for fault-tolerant network storage applications,” in Proceedings of the Fifth IEEE International Symposium on Network Computing and Applications. Washington, DC, USA: IEEE Computer Society, 2006, pp. 173–180.

    Google Scholar 

  31. G. M. Shipman, D. A. Dillow, S. Oral, and F. Wang, The Spider center wide file system: From concept to reality, 2009. [Online]. Available: http://www.nccs.gov/wp-content/uploads/2010/01/shipman_paper.pdf

  32. KGPU, “KGPU: enabling GPU computing in Linux kernel,” 2011, http://code.google.com/p/kgpu.

  33. C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel, “PTask: Operating System Abstractions To Manage GPUs as Compute Devices,” in Proc. ACM SOSP, 2011.

    Google Scholar 

  34. Oracle Corporation, “Lustre Documentation,” 2011, http://wiki.lustre.org/index.php/Lustre_Documentation.

  35. Sun Microsystems, Inc., “LibLustre How-To Guide,” 2010, http://wiki.lustre.org/index.php/LibLustre_How-To_Guide.

  36. J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in C/C++ facilitating erasure coding for storage applications - Version 1.2,” University of Tennessee, Tech. Rep. CS-08-627, August 2008.

    Google Scholar 

  37. L. Wang, M. Huang, and T. El-Ghazawi, “Towards efficient gpu sharing on multicore processors,” in Proceedings of the second international workshop on Performance modeling, benchmarking and simulation of high performance computing systems, ser. PMBS '11. New York, NY, USA: ACM, 2011, pp. 23–24. [Online]. Available: http://doi.acm.org/10.1145/2088457.2088473

  38. M. A. Frumkin and L. V. Shabanov, “Benchmarking memory performance with the data cube operator.” in ISCA PDCS'04, 2004, pp. 165–171.

    Google Scholar 

  39. Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “End-to-end data integrity for file systems: a zfs case study,” in Proceedings of the 8th USENIX conference on File and storage technologies, ser. FAST'10. Berkeley, CA, USA: USENIX Association, 2010, pp. 3–3. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855511.1855514

  40. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph: a scalable, high-performance distributed file system,” in Proceedings of the 7th symposium on Operating systems design and implementation, ser. OSDI '06. Berkeley, CA, USA: USENIX Association, 2006, pp. 307–320. [Online]. Available: http://dl.acm.org/citation.cfm?id=1298455.1298485

  41. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, and T. J. Purcell, “A survey of general-purpose computation on graphics hardware,” in Eurographics 2005, State of the Art Reports, Aug. 2005, pp. 21–51.

    Google Scholar 

  42. S. Al-Kiswany, M. Ripeanu, S. S. Vazhkudai, and A. Gharaibeh, “stdchk: A checkpoint storage system for desktop grid computing,” in Proceedings of the 2008 The 28th International Conference on Distributed Computing Systems, ser. ICDCS '08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 613–624. [Online]. Available: http://dx.doi.org/10.1109/ICDCS.2008.19

  43. S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ripeanu, “Storegpu: exploiting graphics processing units to accelerate distributed storage systems,” in Proceedings of the 17th international symposium on High performance distributed computing, ser. HPDC '08. New York, NY, USA: ACM, 2008, pp. 165–174.

    Google Scholar 

  44. A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and M. Ripeanu, “A gpu accelerated storage system,” in Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, ser. HPDC'10. New York, NY, USA: ACM, 2010, pp. 167–178.

    Google Scholar 

  45. S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, and M. Ripeanu, “On gpu’s viability as a middleware accelerator,” Cluster Computing, vol. 12, pp. 123–140, June 2009.

    Article  Google Scholar 

  46. G. Falcão, L. Sousa, and V. Silva, “Massive parallel ldpc decoding on gpu,” in Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, ser. PPoPP '08. New York, NY, USA: ACM, 2008, pp. 83–90.

    Google Scholar 

  47. O. Harrison and J. Waldron, “Practical symmetric key cryptography on modern graphics hardware,” in Proceedings of the 17th conference on Security symposium. Berkeley, CA, USA: USENIX Association, 2008, pp. 195–209.

    Google Scholar 

  48. A. Moss, D. Page, and N. P. Smart, “Toward acceleration of rsa using 3d graphics hardware,” in Proceedings of the 11th IMA international conference on Cryptography and coding, ser. Cryptography and Coding'07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 364–383.

    Google Scholar 

  49. M. L. Curry, H. L. Ward, A. Skjellum, and R. Brightwell, “A lightweight, gpu-based software raid system,” Parallel Processing, International Conference on, vol. 0, pp. 565–572, 2010.

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by the National Science Foundation under Grants CCF-0746832, CNS-1016793, and CNS-1016408, and used the resources of, the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at ORNL, which is managed by UT Battelle, LLC for the U.S. DOE (under the contract No. DE-AC05-00OR22725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Khasymski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khasymski, A., Rafique, M., Butt, A., Vazhkudai, S., Nikolopoulos, D. (2015). Realizing Accelerated Cost-Effective Distributed RAID. In: Khan, S., Zomaya, A. (eds) Handbook on Data Centers. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2092-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2092-1_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2091-4

  • Online ISBN: 978-1-4939-2092-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics