Skip to main content

Characterization and Analysis of Extracellular Matrix in Malignant Brain Tumors and Their Cellular Derivatives

  • Protocol
  • First Online:
Extracellular Matrix

Part of the book series: Neuromethods ((NM,volume 93))

  • 1375 Accesses

Abstract

The neural extracellular matrix (ECM) is a key regulator of cellular phenotype in normal and diseased states. Analytical approaches have helped uncover the myriad of roles the ECM plays in a variety of diseases including malignant gliomas, the most prevalent and deadly primary brain tumors. Major components of the glioma ECM include secreted proteoglycans as well as basal lamina proteins such as laminins. Characterization of secreted proteoglycans by protein blotting is an invaluable tool to understand their molecular complexity. To provide complete characterization of these molecules, tissue specimens must be first processed to separate insoluble (structural) from soluble proteoglycans. Here, we describe the procedure to separate subcellular fractions by differential centrifugation and extract chondroitin sulfate proteoglycans. Further treatment of these fractions using glycosidases to remove specific carbohydrates, followed by protein electrophoresis and western blotting, provides rich information about the composition and variability of the glioma matrix. To determine ECM protein localization in vivo, immunofluorescence analysis techniques are required. Here we describe commonly used approaches for protein analysis using fluorescence antibody detection in primary human tumor tissue and patient-derived xenografts. Additionally, the characterization of a cancer stem cell fraction in these tumors has received much attention, and we provide the methodology for the visualization of ECM proteins and carbohydrates by immunofluorescence in three-dimensional tumorspheres. These techniques are particularly relevant to correlate matrix expression and changes with glioma growth and invasion or to follow up potential microenvironmental biomarkers during therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Alkaline phosphatase

BCIP:

5-Bromo-4-chloro-3-indolyl phosphate

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

CNS:

Central nervous system

CSPG:

Chondroitin sulfate proteoglycan

DTT:

Dithiothreitol

ECM:

Extracellular matrix

HA:

Hyaluronic acid

HABP:

Hyaluronic acid-binding protein

NBT:

Nitroblue tetrazolium chloride

NEB:

New England Biolabs

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

References

  1. Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol Mech Dis 1:97–117

    Article  CAS  Google Scholar 

  2. Viapiano MS, Matthews RT (2006) From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology. Trends Mol Med 12:488–496

    Article  CAS  PubMed  Google Scholar 

  3. Gritsenko PG, Ilina O, Friedl P (2012) Interstitial guidance of cancer invasion. J Pathol 226:185–199

    Article  CAS  PubMed  Google Scholar 

  4. Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069

    Article  CAS  PubMed  Google Scholar 

  5. Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6:489–492

    Article  CAS  PubMed  Google Scholar 

  6. Lathia JD, Li M, Hall PE et al (2012) Laminin alpha 2 enables glioblastoma stem cell growth. Ann Neurol 72:766–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gladson CL (1999) The extracellular matrix of gliomas: modulation of cell function. J Neuropathol Exp Neurol 58:1029–1040

    Article  CAS  PubMed  Google Scholar 

  8. Paulus W, Huettner C, Tonn JC (1994) Collagens, integrins and the mesenchymal drift in glioblastomas: a comparison of biopsy specimens, spheroid and early monolayer cultures. Int J Cancer 58:841–846

    Article  CAS  PubMed  Google Scholar 

  9. Mahesparan R, Read TA, Lund-Johansen M et al (2003) Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol 105:49–57

    CAS  PubMed  Google Scholar 

  10. Viapiano MS, Lawler SE (2009) Glioma invasion: Mechanisms and Therapeutic Challenges. In: Van Meir E (ed) CNS cancer: models. Prognostic factors and targets. Humana, Jersey City, NJ, pp 1219–1252

    Chapter  Google Scholar 

  11. Varga I, Hutoczki G, Petras M et al (2010) Expression of invasion-related extracellular matrix molecules in human glioblastoma versus intracerebral lung adenocarcinoma metastasis. Cent Eur Neurosurg 71:173–180

    Article  CAS  PubMed  Google Scholar 

  12. Hu B, Kong LL, Matthews RT et al (2008) The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 283:24848–24859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wu Y, Chen L, Zheng PS et al (2002) beta 1-Integrin-mediated glioma cell adhesion and free radical-induced apoptosis are regulated by binding to a C-terminal domain of PG-M/versican. J Biol Chem 277:12294–12301

    Article  CAS  PubMed  Google Scholar 

  14. Lorente G, Nelson A, Mueller S et al (2005) Functional comparison of long and short splice forms of RPTPbeta: implications for glioblastoma treatment. Neuro-Oncology 7:154–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lathia JD, Gallagher J, Heddleston JM et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:421–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rauch U (2004) Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci 61:2031–2045

    Article  CAS  PubMed  Google Scholar 

  17. Matthews RT, Kelly GM, Zerillo CA et al (2002) Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 22:7536–7547

    CAS  PubMed  Google Scholar 

  18. Rodriguez de Lores A, Alberici M, De Robertis E (1967) Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. J Neurochem 14:215–225

    Article  CAS  PubMed  Google Scholar 

  19. Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  CAS  PubMed  Google Scholar 

  20. Viapiano MS, Matthews RT, Hockfield S (2003) A novel membrane-associated glycovariant of BEHAB/brevican is up-regulated during rat brain development and in a rat model of invasive glioma. J Biol Chem 278:33239–33247

    Article  CAS  PubMed  Google Scholar 

  21. Viapiano MS, Bi WL, Piepmeier J et al (2005) Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Cancer Res 65:6726–6733

    Article  CAS  PubMed  Google Scholar 

  22. Davis L, Kuehl M, Battey J (1994) Electrophoresis of proteins on sodium dodecyl sulfate polyacrylamide gels. In: Davis L (ed) Basic methods in molecular biology, 2nd edn. Appleton & Lange, Norwalk, CT, pp 661–668

    Google Scholar 

  23. Harlow E, Lane D (1999) Using antibodies: a laboratory manual. CSHL Press, Cold Spring Harbor, NY, pp 682–689

    Google Scholar 

  24. Binette F, Cravens J, Kahoussi B et al (1994) Link protein is ubiquitously expressed in non-cartilaginous tissues where it enhances and stabilizes the interaction of proteoglycans with hyaluronic acid. J Biol Chem 269:19116–19122

    CAS  PubMed  Google Scholar 

  25. Scouten CW, O'Connor R, Cunningham M (2006) Perfusion fixation of research animals. Microsc Today 14:26–33

    Google Scholar 

  26. Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  CAS  PubMed  Google Scholar 

  27. Duk M, Ugorski M, Lisowska E (1997) beta-Elimination of O-glycans from glycoproteins transferred to immobilon P membranes: method and some applications. Anal Biochem 253:98–102

    Article  CAS  PubMed  Google Scholar 

  28. Gage GJ, Kipke DR, Shain W (2012) Whole animal perfusion fixation for rodents. J Vis Exp 65:3564, doi:3510.3791/3564

    PubMed  Google Scholar 

  29. Fox CH, Johnson FB, Whiting J et al (1985) Formaldehyde fixation. J Histochem Cytochem 33:845–853

    Article  CAS  PubMed  Google Scholar 

  30. Tarentino AL, Plummer TH Jr (1994) Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol 230:44–57

    Article  CAS  PubMed  Google Scholar 

  31. Glasgow LR, Paulson JC, Hill RL (1977) Systematic purification of five glycosidases from Streptococcus (Diplococcus) pneumoniae. J Biol Chem 252:8615–8623

    CAS  PubMed  Google Scholar 

  32. Dino MR, Harroch S, Hockfield S et al (2006) Monoclonal antibody Cat-315 detects a glycoform of receptor protein tyrosine phosphatase beta/phosphacan early in CNS development that localizes to extrasynaptic sites prior to synapse formation. Neuroscience 142:1055–1069

    Article  CAS  PubMed  Google Scholar 

  33. Massey JM, Amps J, Viapiano MS et al (2008) Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 209:426–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano S. Viapiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sinyuk, M., Lathia, J.D., Viapiano, M.S. (2015). Characterization and Analysis of Extracellular Matrix in Malignant Brain Tumors and Their Cellular Derivatives. In: Leach, J., Powell, E. (eds) Extracellular Matrix. Neuromethods, vol 93. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2083-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2083-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2082-2

  • Online ISBN: 978-1-4939-2083-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics