Skip to main content

Advances in EUS

  • Chapter
  • First Online:
Gastrointestinal Endoscopy
  • 1747 Accesses

Abstract

Recent developments in endoscopic ultrasonography (EUS) imaging technology have enhanced its diagnostic ability, particularly in terms of characterizing conventional EUS-detected lesions. The newest EUS modalities are tissue elastography and contrast enhancement, which measure elasticity and vascularity, respectively, and thereby can depict tissue structure in detail. Hard elasticity on EUS elastography and hypo-enhancement on contrast-enhanced EUS are suggestive of ductal carcinomas in the pancreas. These methods are also useful for differentiating malignant from benign lymph nodes, characterizing gallbladder lesions, and estimating the malignant potential of gastrointestinal stromal tumors. Moreover, they complement EUS-guided fine-needle aspiration (EUS-FNA) by correctly diagnosing lesions with EUS-FNA false-negative findings and by identifying the most appropriate target site of EUS-FNA. The EUS can also be used to guide interventions, including drainage and injections. A new application is EUS-guided biliary drainage in obstructive jaundice, which employs several puncture sites and stent deployment methods. This method may be useful when endoscopic retrograde cholangiopancreatography (ERCP) is unsuccessful. Although there is risk of some adverse events, such as bile leakage, the technical and clinical success rates of EUS-guided biliary drainage are satisfactory: both exceed 90 %. Another EUS-guided intervention is EUS-guided celiac plexus neurolysis (EUS-CPN), which is an effective and safe treatment for cancer-related pain. Pain relief can be obtained in approximately 80 % of patients, whereas severe adverse effects are observed in less than 1 %. Two recent technological advancements on EUS-CPN are EUS-guided direct celiac ganglia neurolysis and EUS-guided broad plexus neurolysis (EUS-BPN) over the superior mesenteric artery—both have greater pain-relieving efficacy compared to EUS-CPN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMagno EP, Baxton JL, Regan PT, et al. Ultrasonic endoscope. Lancet. 1980;i:629–31.

    Google Scholar 

  2. Strohm WD, Phillip J, Classen M, et al. Ultrasonic tomography by means of an ultrasonic fiberendoscope. Endoscopy. 1980;12:241–4.

    CAS  PubMed  Google Scholar 

  3. Rösch T, Lightdale CJ. Botet JF, et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography. N Eng J Med. 1992;326:1721–6.

    Google Scholar 

  4. DeWitt J, Devereaux B, Chriswell M, et al. Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann Intern Med. 2004;141:753–63.

    PubMed  Google Scholar 

  5. Khashab MA, Yong E, Lennon AM, et al. EUS is still superior to multidetector computed tomography for detection of pancreatic neuroendocrine tumors. Gastrointest Endosc. 2011;7:691–6.

    Google Scholar 

  6. Frey H. Real-time elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe. 2003;43:850–5.

    CAS  PubMed  Google Scholar 

  7. Săftoiu A, Vilman P. Endoscopic ultrasound elastography—a new imaging technique for the visualization of tissue elasticity distribution. J Gastrointest Liver Dis. 2006;15:161–5.

    Google Scholar 

  8. Giovannini M, Hookey LC, Bories E, et al. Endoscopic ultrasound elastography: the first step towards virtual biopsy? Preliminary results in 49 patients. Endoscopy. 2006;38:344–8.

    CAS  PubMed  Google Scholar 

  9. Dietrich CF, Ignee A, Frey H. Contrast-enhanced endoscopic ultrasound with low mechanical index: a new technique. Z Gastroenterol. 2005;43:1219–23.

    CAS  PubMed  Google Scholar 

  10. Kitano M, Sakamoto H, Matsui U, et al. A novel perfusion imaging technique of the pancreas: contrast-enhanced harmonic EUS (with video). Gastrointest Endosc. 2008;67:141–50.

    PubMed  Google Scholar 

  11. Vilmann P, Jacobsen GK. Henriksen FW, et al. Endoscopic ultrasonography with guided fine needle aspiration biopsy in pancreatic disease. Gastrointest Endosc. 1992;38:172–3.

    CAS  PubMed  Google Scholar 

  12. Giovannini M, Moutardier V. Pesenti C, et al. Endoscopic ultrasound-guided bilioduodenal anastomosis: a new technique for biliary drainage. Endoscopy. 2001;33:898–900.

    CAS  PubMed  Google Scholar 

  13. Burmester E, Niehaus J, Leineweber T, et al. EUScholangio-drainage of the bile duct: report of 4 cases. Gastrointest Endosc. 2003;57:246–51.

    PubMed  Google Scholar 

  14. Wiersema MJ, Wiersema LM. Endosoonography-guided celiac plexus neurolysis. Gastrointest Endosc. 1996;44:656–62.

    CAS  PubMed  Google Scholar 

  15. Levy MJ, Topazian MD, Wiersema MJ, Clain JE, Rajan E, Wang KK, et al. Initial evaluation of the efficacy and safety of endoscopic ultrasound-guided direct ganglia neurolysis and block. Am J Gastroenterol. 2008;103:98–103.

    PubMed  Google Scholar 

  16. Sakamoto H, Kitano M, Kamata K, Komaki T, Imai H, Chikugo T, Takeyama Y, Kudo M. EUS-guided broad plexus neurolysis over the superior mesenteric artery using a 25-gauge needle. Am J Gastroenterol. 2010;105:2599–606.

    PubMed  Google Scholar 

  17. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.

    CAS  PubMed  Google Scholar 

  18. Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16:231–39.

    CAS  PubMed  Google Scholar 

  19. Gao L, Parker KJ, Lerner RM, Levinson SF. Imaging of the elastic properties of tissue: a review. Ultrasound Med Biol. 1996;22:959–77.

    CAS  PubMed  Google Scholar 

  20. Ophir J, Cespedes EI, Garra BS, et al. Elastography: ultrasonic imaging of tissue strain and elastic modulus in vivo. Eur J Ultrasound. 1996;3:49–70.

    Google Scholar 

  21. Doyley MM, Meaney PM, Bamber JC. Evaluation of an iterative reconstruction method for quantitative elastography. Phys Med Biol. 2000;45:1521–40.

    CAS  PubMed  Google Scholar 

  22. Janssen J, Schlorer E, Greiner L, et al. EUS elastgraphy of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc. 2007;65:971–8.

    PubMed  Google Scholar 

  23. Giovannini M, Thomas B, Erwan B, et al. Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol. 2009;15:1587–93.

    PubMed Central  PubMed  Google Scholar 

  24. Iglesias-Garcia J, Larino-Noia J, Abdulkader I, et al. EUS elastography for the characterization of solid pancreatic masses. Gastrointest Endosc. 2009;70:1101–8.

    PubMed  Google Scholar 

  25. Itokawa F, Itoi T, Sofuni A, et al. EUS elastography combined with the strain ratio of tissue elasticity for diagnosis of solid pancreatic masses. J Gastroenterol. 2011;46:843–53.

    PubMed  Google Scholar 

  26. Hocke M, Ignee A, Dietrich CF. Advanced endosonographic diagnostic tools for discrimination of focal chronic pancreatitis and pancreatic carcinoma- elastography, contrast enhanced high mechanical index (CEHMI) and low mechanical index (CELMI) endosonography in direct comparison. Z Gastroenterol. 2012;50:199–203.

    CAS  PubMed  Google Scholar 

  27. Iglesias-Garcia J, Larino-Noia J, Abdulkader I, et al. Quantitative endoscopic ultrasound elastography: an accurate method for the differentiation of solid pancreatic masses. Gastroenterology. 2010;139:1172–80.

    PubMed  Google Scholar 

  28. Dawwas MF, Taha H, Leeds JS, et al. Diagnostic accuracy of quantitative EUS elastography for discriminating malignant from benign solid pancreatic masses: a prospective, single-center study. Gastrointest Endosc. 2012;76:953–61.

    PubMed  Google Scholar 

  29. Săftoiu A, Iordache SA, Gheonea DI, et al. Combined contrast-enhanced power Doppler and real-time sonoelastography performed during EUS, used in the differential diagnosis of focal pancreatic masses (with videos). Gastrointest Endosc. 2010;72:739–47.

    PubMed  Google Scholar 

  30. Săftoiu A, Vilmann P, Gorunescu F, et al. Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. Endoscopy. 2011;43:596–603.

    PubMed  Google Scholar 

  31. Săftoiu A, Vilmann P, Gorunescu F, et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc. 2008;68:1086–94.

    PubMed  Google Scholar 

  32. Săftoiu A, Vilmann P, Gorunescu F, et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clin Gastroenterol Hepatol. 2012;10:84–90.

    PubMed  Google Scholar 

  33. Mei M, Ni J, Liu D, Jin P, Sun L. EUS elastography for diagnosis of solid pancreatic masses: a meta-analysis. Gastrointest Endosc. 2013;77:578–89.

    PubMed  Google Scholar 

  34. Iglesias-Garcia J, Dominguez-Munoz JE, Castineira-Alvarino M, et al. Quantitative elastography associated with endoscopic ultrasound for the diagnosis of chronic pancreatitis. Endoscopy. 2013;45(10):781–8.

    PubMed  Google Scholar 

  35. Itoh Y, Itoh A, Kawashima H, et al. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens). J Gastoroenterol 2014;49(7):1183–92. doi:10.1007/s00535-013008 80–4

    Google Scholar 

  36. Xu W, Shi J, Zeng X, et al. EUS elastography for the differentiation of benign and malignant lymph nodes: a meta-analysis. Gastrointest Endosc. 2011;74:1001–9.

    PubMed  Google Scholar 

  37. Janssen J, Dietrich CF, Will U, Greiner L. Endosonographic elastography in the diagnosis of mediastinal lymph nodes. Endoscopy. 2007;39:952–7.

    CAS  PubMed  Google Scholar 

  38. Săftoiu A, Vilmann P, Hassan H, et al. Analysis of endoscopic ultrasound elastgraphy used for characterisation and differentiation of benign and malignant lymph nodes. Ultraschall Med. 2006;27:532–42.

    Google Scholar 

  39. Săftoiu A, Vilmann P, Ciurea T, et al. Dynamic analysis of EUS used for the differentiation of benign and malignant lymph nodes. Gastrointest Endosc. 2007;66:291–300.

    PubMed  Google Scholar 

  40. Larsen MH, Fristrup C, Mortensen M, et al. Intra- and interobserver agreement of endoscopic sonoelastography in the evaluation of lymph nodes. Ultraschall in Med. 2011;32:E45–E50.

    Google Scholar 

  41. Quaia E. Classification and safety of microbubble-based contrast agents. In: Quaia E, editor. Contrast media in ultrasonography. Basic principles and clinical applications. Berlin:Springer; 2005. p. 1–14.

    Google Scholar 

  42. Kudo M. Various contrast-enhanced imaging modes after administration of Levovist. In: Kudo M, editor. Contrast harmonic imaging in the diagnosis and treatment of hepatic tumors. Tokyo:Springer; 2003. p. 22–30.

    Google Scholar 

  43. Whittingham TA. Contrast-specific imaging techniques; technical perspective. In: Quaia E, editor. Contrast media in ultrasonography. Basic principles and clinical applications. Berlin:Springer; 2005. p. 43–84.

    Google Scholar 

  44. Kitano M, Kudo M, Sakamoto H, et al. Preliminary study of contrastenhanced harmonic endosonography with second-generation contrast agents. J Med Ultrasonics. 2008;35:11–8.

    Google Scholar 

  45. Becker D, Strobel D, Bernatik T, et al. Echo-enhanced color and power-Doppler EUS for the discrimination between focal pancreatitis and pancreatic carcinoma. Gastrointest Endosc. 2001;53:784–9.

    CAS  PubMed  Google Scholar 

  46. Hocke M, Schulze E, Gottschalk P, et al. Contrast-enhanced endoscopic ultrasound in discrimination between focal pancreatitis and pancreatic cancer. World J Gastroenterol. 2006;12:246–50.

    PubMed Central  PubMed  Google Scholar 

  47. Sakamoto H, Kitano M, Suetomi Y, et al. Utility of contrastenhanced endoscopic ultrasonography for diagnosis of small pancreatic carcinomas. Ultrasound Med Biol. 2008;34:525–32.

    PubMed  Google Scholar 

  48. Das K, Kudo M, Kitano M, et al. Diagnostic value of endoscopic ultrasound-guided directional eFLOW in solid pancreatic lesions. J Med Ultrason. 2013;40:211–8.

    Google Scholar 

  49. Dietrich CF, Ignee A, Braden B, et al. Improved differentiation of pancreatic tumors using contrast-enhanced endoscopic ultrasound. Clin Gastroenterol Hepatol. 2008;6:590–7.

    PubMed  Google Scholar 

  50. Ishikawa T, Itoh A. Kawashima H, et al. Usefulness of EUS combined with contrast-enhancement in the differential diagnosis of malignant versus benign and preoperative localization of pancreatic endocrine tumors. Gastrointest Endosc. 2010;71:951–9.

    PubMed  Google Scholar 

  51. Kanamori A, Hirooka Y, Itoh A, et al. Usefulness of contrast enhanced endoscopic ultrasonography in the differentiation between malignant and benign lymphadenopathy. Am J Gastroenterol. 2006;101:45–51.

    PubMed  Google Scholar 

  52. Fusaroli P, Spada A, Mancino MG, et al. Contrast harmonic echo-endoscopic ultrasound improves accuracy in diagnosis of solid pancreatic masses. Clin Gastroenterol Hepatol. 2010;8:629–34.

    PubMed  Google Scholar 

  53. Napoleon B, Alvarez-Sanchez MV, Gincoul R, et al. Contrast enhanced harmonic endoscopic ultrasound in solid lesions of the pancreas: results of a pilot study. Endoscopy. 2010;42:564–70.

    CAS  PubMed  Google Scholar 

  54. Kitano M, Kudo M, Yamao K, et al. Characterization of small solid tumors in the pancreas: contrast: the value of contrast enhanced harmonic endoscopic ultrasonography. Am J Gastroenterol. 2012;107:303–10.

    PubMed  Google Scholar 

  55. Gincul R, Palazzo M, Pujol B, et al. Contrast-harmonic endoscopic ultrasound for the diagnosis of pancreatic adenocarcinoma: a prospective multicenter trial. Endoscopy. 2014;46:373–9.

    PubMed  Google Scholar 

  56. Gong TT, Hu DM, Zhu Q. Contrast-enhanced EUS for differential diagnosis of pancreatic mass lesions: a meta-analysis. Gastrointest Endosc. 2012;76:301–9.

    PubMed  Google Scholar 

  57. Romagnuolo J, Hoffman B, Vela S, et al. Accuracy of contrast enhanced harmonic EUS with a second-generation perflutren lipid microsphere contrast agent (with video). Gastrointest Endosc. 2011;73:52–63.

    PubMed  Google Scholar 

  58. Ohno E, Hirooka Y, Itoh A, et al. Intraductal papillary mucinous neoplasms of the pancreas: differentiation of malignant and benign tumors by endoscopic ultrasound findings of mural nodules. Ann Surg. 2009;249:628–34.

    PubMed  Google Scholar 

  59. Imazu H, Uchiyama Y, Matsunaga K, et al. Contrast-enhanced harmonic EUS with novel ultrasonographic contrast (Sonazoid) in the preoperative T-staging for pancreaticobiliary malignancies. Scand J Gastroenterol. 2010;45:732–8.

    PubMed  Google Scholar 

  60. Xia Y, Kitano M. Kudo M, et al. Characterization of intra-abdominal lesions of undetermined origin by contrast-enhanced harmonic EUS (with video). Gastrointest Endosc. 2010;72:637–42.

    PubMed  Google Scholar 

  61. Imazu H, Mori N, Kanazawa K, et al. Contrast-enhanced harmonic endoscopic ultrasonography in the differential diagnosis of gallbladder wall thickening. Dig Dis Sci 2014;59(8):1909–16. doi:10.1007/s10620-014-3115-5

    PubMed  Google Scholar 

  62. Choi JH, Seo DW, Choi JH, et al. Utility of contrast-enhanced harmonic EUS in the diagnosis of malignant gallbladder polyps (with videos). Gastrointest Endosc. 2013;78:484–93.

    PubMed  Google Scholar 

  63. Kannengiesser K, Mahlke1 R, Petersen F, et al. Contrast enhanced harmonic endoscopic ultrasound is able to discriminate benign submucosal lesions from gastrointestinal stromal tumors. Scand J Gastroenterol. 2012;47:1515–20.

    PubMed  Google Scholar 

  64. Sakamoto H, Kitano M, Matsui S, et al. Estimation of malignant potential of GIST by contrast-enhanced harmonic EUS (with video). Gastrointest Endosc. 2011;73:27–37.

    Google Scholar 

  65. Seicean A, Badea R, Stan-Iuga R, Mocan T, Gulei I, Pascu O. Quantitative contrast-enhanced harmonic endoscopic ultrasonography for the discrimination of solid pancreatic masses. Ultraschall. Med. 2010;31:571–6.

    CAS  PubMed  Google Scholar 

  66. Imazu H, Kanazawa K, Mori N, et al. Novel quantitative perfusion analysis with contrast-enhanced harmonic EUS for differentiation of autoimmune pancreatitis from pancreatic carcinoma. Scand J Gastroenterol. 2012;47:853–60.

    PubMed  Google Scholar 

  67. Gheonea DI, Streba CT, Ciurea T. Săftoiu A. Quantitative low mechanical index contrast enhanced endoscopic ultrasound for the differential diagnosis of chronic pseudotumoral pancreatitis and pancreatic cancer. BMC Gastroenterol. 2013;13:2.

    PubMed Central  PubMed  Google Scholar 

  68. Matsubara H, Itoh A. Kawashima H, et al. Dynamic quantitative evaluation of contrast enhanced endoscopic ultrasonography in the diagnosis of pancreatic diseases. Pancreas. 2011;40:1073–9.

    PubMed  Google Scholar 

  69. Kitano M, Sakamoto H, Komaki T, et al. FNA guided by contrast-enhanced harmonic EUS in pancreatic tumors. Gastrointest.Endosc. 2009;69:A328–29.

    Google Scholar 

  70. Romagnuolo J. Flow, firmness. or FNA? Is enhanced EUS fantastic or just fancy? Gastrointest Endosc. 2012;76:310–2.

    PubMed  Google Scholar 

  71. Yamao K, Hara K, Mizuno N, et al. EUS-Guided biliary drainage. Gut and Liver. 2010;4(Suppl 1):S67–75.

    PubMed Central  PubMed  Google Scholar 

  72. Itoi T, Sofuni A, Itokawa F, et al. Endoscopic ultrasonography-guided biliary drainage. J Hepatobiliary Pancreat Sci. 2010;17:611–6.

    PubMed  Google Scholar 

  73. Artifon EL, Ferreira FC, Otoch JP, Rasslan S, Itoi T, Perez-Miranda M. EUS-guided biliary drainage: a review article. JOP. 2012;13:7–17.

    PubMed  Google Scholar 

  74. Perez-Miranda M, Barclay RL, Kahaleh M. Endoscopic ultrasonography-guided endoscopic retrograde cholangiopancreatography: endosonographic cholangiopancreatography. Gastrointest Endosc Clin N Am. 2012;22:491–509.

    PubMed  Google Scholar 

  75. Kedia P, Gaidhane M, Kahaleh M. Endoscopic guided biliary drainage: how can we achieve efficient biliary drainage? Clin Endosc. 2013;46:543–51.

    PubMed Central  PubMed  Google Scholar 

  76. Sarkaria S, Lee HS, Gaidhane M, Kahaleh M. Advances in endoscopic ultrasound-guided biliary drainage: a comprehensive review. Gut Liver. 2013;7:129–36.

    PubMed Central  PubMed  Google Scholar 

  77. Mallery S, Matlock J, Freeman ML. EUS-guided rendezvous drainage of obstructed biliary and pancreatic ducts: report of 6 cases. Gastrointest Endosc. 2004;59:100–7.

    PubMed  Google Scholar 

  78. Kahaleh M, Hernandez AJ, Tokar J, et al. Interventional EUS-guided cholangiography: evaluation of a technique in evolution. Gastrointest Endosc. 2006;64:52–59.

    PubMed  Google Scholar 

  79. Will U, Thieme A, Fueldner F, et al. Treatment of biliary obstruction in selected patients by endoscopic ultrasonography (EUS)-guided trans-luminal biliary drainage. Endoscopy. 2007;39:292–5.

    CAS  PubMed  Google Scholar 

  80. Bories E, Pesenti C, Caillol F. Transgastric endoscopic ultrasonography-guided biliary drainage: results of a pilot study. Endoscopy. 2007;39:287–91.

    CAS  PubMed  Google Scholar 

  81. Yamao K, Bhatia V, Mizuno N, et al. EUS-guided choledochoduodenostomy for palliative biliary drainage in patients with malignant biliary obstruction: results of long-term follow-up. Endoscopy. 2008;40:340–2.

    CAS  PubMed  Google Scholar 

  82. Itoi T, Itokawa F, Sofuni A, et al. Endoscopic ultrasound-guided choledochoduodenostomy in patients with failed endoscopic retrograde cholangiopancreatography. World J Gastroenterol. 2008;14:6078–82.

    PubMed Central  PubMed  Google Scholar 

  83. Hanada K, Iiboshi T, Ishii Y. Endoscopic ultrasound-guided choledochoduldenostomy for palliative biliary drainage in a cases with inoperable pancreas head carcinoma. Dig Endosc. 2009;21(Suppl1):S75–78.

    PubMed  Google Scholar 

  84. Park DH, Koo JE, Oh J, et al. EUS-guided biliary drainage with one-step placement of a fully covered metal stent for malignant biliary obstruction: a prospective feasibility study. Am J Gastroenterol. 2009;104:2168–74.

    Google Scholar 

  85. Brauer BC, Chen YK, Fukami N, et al. Single-operator EUS-guided cholangiopancreatography for difficult pancreaticobiliary access (with video). Gastrointest Endosc. 2009;70:471–9.

    PubMed  Google Scholar 

  86. Maranki J, Hernandez AJ, Arslan B, et al. Interventional endoscopic ultrasound-guided cholangiography: long-term experience of an emerging alternative to percutaneous transhepatic cholangiography. Endoscopy. 2009;41:532–8.

    CAS  PubMed  Google Scholar 

  87. Horaguchi J, Fujita N, Noda Y, et al. Endosonography-guided biliary drainage in cases with difficult transpapillary endoscopic biliary drainage. Dig Endosc. 2009;21:239–44.

    PubMed  Google Scholar 

  88. Kim YS, Gupta K, Mallery S, et al. Endoscopic ultrasound rendezvous for bile duct access using a transduodenal approach: cumulative experience at a single center. A case series. Endoscopy. 2010;42:496–502.

    CAS  PubMed  Google Scholar 

  89. Nguyen-Tang T, Binmoeller KF, Sanchez-Yague A, et al. Endoscopic ultrasound (EUS)-guided transhepatic anterograde self-expandable metal stent (SEMS) placement across malignant biliary obstruction. Endoscopy. 2010;42:232–6.

    CAS  PubMed  Google Scholar 

  90. Hara K, Yamao K, Hijioka S, et al. Prospective clinical study of endoscopic ultrasound- guided choledochoduodenostomy with direct metallic stent placement using a forward-viewing echoendo- scope. Endoscopy. 2013;45:392–6.

    CAS  PubMed  Google Scholar 

  91. Park DH, Jang JW, Lee SS, et al. EUS-guided biliary drainage with transluminal stenting after failed ERCP: predictors of adverse events and long-term results. Gastrointest Endosc. 2011;74:1276–84.

    Google Scholar 

  92. Fabbri C, Luigiano C, Fuccio L, et al. EUS-guided biliary drainage with placement of a new partially covered biliary stent for palliation of malignant biliary obstruction: a case series. Endoscopy. 2011;43:438–41.

    CAS  PubMed  Google Scholar 

  93. Ramírez-Luna MA, Téllez-Ávila GI, Giovannini M, et al. Endoscopic ultrasound-guided biliodigestive drainage is a good alternative in patients with unresectable cancer. Endoscopy. 2011;43:826–30.

    PubMed  Google Scholar 

  94. Komaki T, Kitano M, Sakamoto H, et al. Endoscopic ultrasonography-guided biliary drainage: evaluation of a Choledochoduodenostomy technique. Pancreatology. 2011;11(Suppl 1):47–51.

    PubMed  Google Scholar 

  95. Horaguchi J, Fujita N, Noda Y, et al. One-step placement of a fully-covered metal stent in endosonography-guided biliary drainage for malignant biliary obstruction. Intern Med. 2011;50:2089–93.

    PubMed  Google Scholar 

  96. Siddiqui AA, Sreenarasimhaiah J, Lara LF, et al. Endoscopic ultrasound-guided transduodenal placement of a fully covered metal stent for palliative biliary drainage in patients with malignant biliary obstruction. Surg Endosc. 2011;25:549–55.

    PubMed  Google Scholar 

  97. Vila JJ, Pérez-Miranda M, Vazquez-Sequeiros E, et al. Initial experience with EUS-guided cholangiopancreatography for biliary and pancreatic duct drainage: a Spanish national survey. Gastrointest Endosc. 2012;76:1133–41.

    PubMed  Google Scholar 

  98. Horaguchi J, Fujita N, Noda Y, et al. Metallic stent deployment in endosonography-guided biliary drainage: long-term follow-up results in patients with bilio-enteric anastomosis. Dig Endosc. 2012;24:457–61.

    PubMed  Google Scholar 

  99. Iwashita T, Lee JG, Shinoura S, et al. Endoscopic ultrasound-guided rendezvous for biliary access after failed cannulation. Endoscopy. 2012;44:60–5.

    CAS  PubMed  Google Scholar 

  100. Kim TH, Kim SH, Oh HJ, et al. Endoscopic ultrasound-guided biliary drainage with placement of a fully covered metal stent for malignant biliary obstruction. World J Gastroenterol. 2012;18:2526–32.

    PubMed Central  PubMed  Google Scholar 

  101. Shah JN, Marson F, Weilert F, et al. Single-operator, single-session EUS-guided anterograde cholangiopancreatography in failed ERCP or inaccessible papilla. Gastrointest Endosc. 2012;75:56–64.

    PubMed  Google Scholar 

  102. Dhir V, Bhandari S, Bapat M, et al. Comparison of EUS-guided rendezvous and precut papillotomy techniques for biliary access (with videos). Gastrointest Endosc. 2012;75:354–9.

    PubMed  Google Scholar 

  103. Artifon EL, Aparicio D, Paione JB, et al. Biliary drainage in patients with unresectable, malignant obstruction where ERCP fails: endoscopic ultrasonography-guided choledochoduodenostomy versus percutaneous drainage. J Clin Gastroenterol. 2012;46:768–74.

    PubMed  Google Scholar 

  104. Park DH. Endoscopic ultrasonography-guided hepaticogastrostomy. Gastrointest Endosc Clin N Am. 2012;22:271–80.

    Google Scholar 

  105. Yamao K, Hara K, Mizuno N, et al. Endoscopic ultrasound-guided choledochoduodenostomy for malignant lower biliary tract obstruction. Gastrointest Endosc Clin N Am. 2012;22:259–69.

    PubMed  Google Scholar 

  106. Iwashita T, Lee JG. Endoscopic ultrasonography-guided biliary drainage: rendezvous technique. Gastrointest Endosc Clin N Am. 2012;22:249–58.

    PubMed  Google Scholar 

  107. Iwashita T, Yasuda I, Doi S, et al. Endoscopic ultrasound-guided antegrade treatments for biliary disorders in patients with surgically altered anatomy. Dig Dis Sci. 2013;58:2417–22.

    PubMed  Google Scholar 

  108. Nguyen-Tang T, Binmoeller KF, Sanchez-Yague A, et al. Endoscopic ultrasound (EUS)-guided transhepatic anterograde self-expandable metal stent (SEMS) placement across malignant biliary obstruction. Endoscopy. 2010;42:232–6.

    CAS  PubMed  Google Scholar 

  109. Hara K, Yamao K, Niwa Y, et al. Prospective clinical study of EUS-guided choledochoduodenostomy for malignant lower biliary tract obstruction. Am J Gastroenterol. 2011;106:1239–45;.

    PubMed  Google Scholar 

  110. Ogura T, Masuda D, Imoto A, et al. EUS-guided hepaticogastrostomy combined with fine-gauge antegrade stenting: a pilot study. Endoscopy. 2014;46:416–21.

    PubMed  Google Scholar 

  111. Ogura T, Kurisu Y, Masuda D, A novel method of EUS-guided hepaticogastrostomy to prevent stent dysfunction. J Gastroenterol Hepatol. 2014;29(10):1815–21. doi:10.1111/jgh.12598.

    PubMed  Google Scholar 

  112. Gupta K, Perez-Miranda M, Kahaleh M, et al. Endoscopic ultrasound-assisted bile duct access and drainage: multicenter, long-term analysis of approach, outcomes, and complications of a technique in evolution. J Clin Gastroenterol. 2014;48:80–7.

    PubMed  Google Scholar 

  113. Widmer J, Singhal S, Gaidhane M, Kahaleh M. Endoscopic ultrasound-guided endoluminal drainage of the gallbladder. Dig Endosc. 2014;26(4):525–31. doi:10.1111/den.12221.

    PubMed  Google Scholar 

  114. Lee SS, Park doH, Hwang CY, et al. EUS-guided transmural cholecystostomy as rescue management for acute cholecystitis in elderly or high-risk patients: a prospective feasibility study. Gastrointest Endosc. 2007;66:1008–12.

    PubMed  Google Scholar 

  115. Kwan V, Eisendrath P, Antaki F, et al. EUS-guided cholecystenterostomy: a new technique (with videos). Gastrointest Endosc. 2007;66:582–6.

    PubMed  Google Scholar 

  116. Kamata K, Kitano M, Komaki T, Sakamoto H, Kudo M. Transgastric endoscopic ultrasound (EUS)-guided gallbladder drainage for acute cholecystitis. Endoscopy. 2009;41(Suppl 2):E315–6.

    PubMed  Google Scholar 

  117. Jang JW, Lee SS, Song TJ, et al. Endoscopic ultrasound-guided transmural and percutaneous transhepatic gallbladder drainage are comparable for acute cholecystitis. Gastroenterology. 2012;142:805–11.

    PubMed  Google Scholar 

  118. Jang JW, Lee SS, Park DH, et al. Feasibility and safety of EUS-guided transgastric/transduodenal gallbladder drainage with single-step placement of a modified covered self-expandable metal stent in patients unsuitable for cholecystectomy. Gastrointest Endosc. 2011;74:176–81.

    PubMed  Google Scholar 

  119. Kamata K, Kitano M, Kudo M, et al. Endoscopic ultrasound (EUS)-guided transluminal endoscopic removal of gallstones. Endoscopy. 2010;42(Suppl 2):E331–2.

    PubMed  Google Scholar 

  120. Itoi T, Binmoeller KF, Shah J, et al. Clinical evaluation of a novel lumen-apposing metal stent for endosonography-guided pancreatic pseudocyst and gallbladder drainage (with videos). Gastrointest Endosc. 2012;75:870–6.

    PubMed  Google Scholar 

  121. de la Serna-HigueraC, Pérez-Miranda M, Gil-Simón P. EUS-guided transenteric gallbladder drainage with a new fistula-forming, lumen-apposing metal stent. Gastrointest Endosc. 2013;77:303–8.

    Google Scholar 

  122. Itoi T, Coelho-Prabhu N, Baron TH. Endoscopic gallbladder drainage for management of acute cholecystitis. Gastrointest Endosc. 2010;71:1038–45.

    PubMed  Google Scholar 

  123. Nakai Y, Isayama H, Tsujino T, et al. Intraductal US in the assessment of tumor involvement to the orifice of the cystic duct by malignant biliary obstruction. Gastrointest Endosc. 2008;68:78–83.

    PubMed  Google Scholar 

  124. Moon JH, Choi HJ, Kim DC. A newly designed fully covered metal stent for lumen apposition in EUS-guided drainage and access: a feasibility study (with videos). Gastrointest Endosc. 2014;79:990–5.

    PubMed  Google Scholar 

  125. Teoh AY, Binmoeller KF, Lau JY. Single-step EUS-guided puncture and delivery of a lumen-apposing stent for gallbladder drainage using a novel cautery-tipped stent delivery system. Gastrointest Endosc. 2014;S0016–5107(14):01307–8. doi:10.1016/j.gie.2014.03.038.

    Google Scholar 

  126. World Health Organization. Cancer pain relief: with a guide to opioid availability. 2nd. ed. Geneva:WHO; 1996.

    Google Scholar 

  127. Ventafeidda V, Tamburini M, Caraceni A, De Conno F, Naldi F. A validation study of the WHO method for cancer pain relief. Cancer. 1987;59:850–6.

    Google Scholar 

  128. Zech DF, Grond S, Lynch J, Hertel D, Lehmann KA. Validation of World Health Organization guidelines for cancer pain relief: a 10-year prospective study. Pain. 1995;63:65–76.

    CAS  PubMed  Google Scholar 

  129. Kappis M. Erfahrungen mit Lokalanasthesiebei Bauchoperationen. Verh Dtsch Gesellsch Chir. 1914;43:87–9.

    Google Scholar 

  130. Elsenberg E, Carr DB, Chalmers TC. Neurolytic celiac plexus block for treatment of cancer pain: a meta-analysis. Anesth Analg. 1995;1:213.

    Google Scholar 

  131. Werner N, Nikki P, Geertruida B, et al. Celiac plexus neurolysis for abdominal cancer pain: a systematic review. Pain Med. 2013;14:1140–63.

    Google Scholar 

  132. De Cicco M, Matovic M, Balestreri L, Fracasso A, Morassut S, Testa V. Single-needle celiac plexus block. Anesthesiology. 1997;87:1301–8.

    CAS  PubMed  Google Scholar 

  133. Wiersema MJ, Wiersema LM. Endosonography-guided celiac plexus neurolysis. Gastrointest Endosc. 1996;44:656–62.

    CAS  PubMed  Google Scholar 

  134. Hoffman BJ. EUS-guided celiac plexus block/neurolysis. Gastrointest Endosc. 2002;56:S26–S8.

    PubMed  Google Scholar 

  135. Sahai AV, Lemelin V, Lam E, et al. Central versus bilateral endoscopic ultrasound-guided celiac plexus block or neurolysis: a comparative study of short-term effectiveness. Am J Gastroenterol. 2009;104:326–9.

    PubMed  Google Scholar 

  136. Leblanc J, Al-Haddad M, Mchenry L, et al. A prospective, randomized study of EUS-guided celiac plexus neurolysis for pancreatic cancer: one injection or two? Gastrointest Endosc. 2011;74:1300–7.

    PubMed  Google Scholar 

  137. Gunaratnam NT, Sarma AV, Norton ID, et al. A prospective study of EUS-guided celiac plexus neurolysis for pancreatic cancer pain. Gastrointest Endosc. 2001;54:316–24.

    CAS  PubMed  Google Scholar 

  138. Puli S, Reddy J, Bechtold M, et al. EUS-guided celiac plexus neurolysis for pain due to chronic pancreatitis or pancereatic cancer pain: a meta-analysis and systematic review. Dig Dis Sci. 2009;54:2330–7.

    PubMed  Google Scholar 

  139. Sakamoto H, Kitano M, Nishio T, Takeyama Y, Yasuda C, Kudo M. Value of computed tomography for evaluating the injection site in endosonography-guided celiac plexus neurolysis. Dig Endosc. 2006.;18:206–11.

    Google Scholar 

  140. Iwata K, Yasuda I, Masamichi E, et al. Predictive factors for pain relief after endoscopic ultrasound-guided celiac plexus neurolysis. Digestive Endosc. 2011;23:140–5.

    Google Scholar 

  141. Leblanc J, Rawl S, Juan M, et al. Endoscopic ultrasound-guided celiac plexus neurolysis in pancreatic cancer: a prospective pilot study of safety using 10 mL versus 20 mL alcohol. Diagn Ther Endosc. 2014 (in press). doi:10.1155/2013/327036

    Google Scholar 

  142. Wyse J, Carone M, Paquin S, et al. Randomized, double-blind, controlled trial of early endoscopic ultrasound-guided celiac plexus neurolysis to prevent pain progression in patients with newly diagnosed, painful, inoperable pancreatic cancer. J Clin Oncol. 2011;29:3541–6.

    PubMed  Google Scholar 

  143. Adler DG, Jacobson BC, Davila RE, et al. ASGE: ASGE guideline: complication of EUS. Gastrointest Endosc. 2005;61:8–12.

    PubMed  Google Scholar 

  144. Ahmed HM, et al. End-organ ischemia as an unforeseen complication of endoscopic-ultrasound-guided celiac plexus neurolysis. Endoscopy. 2009;41:E218–9.

    PubMed  Google Scholar 

  145. Gress F, Schmitt C, Sherman S, et al. Endoscopic ultrasound-guided celiac plexus block for managing abdominal pain associated with chronic pancreatitis: a prospective single center experience. Am J Gastroenterol. 2001;96:409–16.

    CAS  PubMed  Google Scholar 

  146. Levy M, Rajan E, Keeney G, et al. Neural ganglia visualized by endoscopic ultrasound. Am J Gastroeterol. 2006;101:1787–91.

    Google Scholar 

  147. Gleeson FC, Levy MJ, Papachristou GI, et al. Frequency of visualization of presumed celiac ganglia by endoscopic ultrasound. Endoscopy. 2007;39:620–4.

    CAS  PubMed  Google Scholar 

  148. Levy MJ, Topazian MD, Wiersema MJ, et al. Initial evaluation of the efficacy and safety of endoscopic ultrasound-guided direct ganglia neurolysis and block. Am J Gastoroenterol. 2008;103:98–103.

    Google Scholar 

  149. Doi S, Yasuda I, Kawakami H, et al. Endoscopic ultrasound-guided celiac ganglia neurolysis vs. celiac plexus neurolysis: a randomized multicentre trial. Endoscopy. 2013;45:362–9.

    CAS  PubMed  Google Scholar 

  150. Sakamoto H, Kitano M, Kamata K, et al. EUS-guided broad plexus neurolysis over the superior mesenteric artery using a 25-gauge needle. Am J Gastroenterol. 2010;105:2599–606.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Kitano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kitano, M., Kamata, K. (2015). Advances in EUS. In: Jonnalagadda, S. (eds) Gastrointestinal Endoscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2032-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2032-7_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2031-0

  • Online ISBN: 978-1-4939-2032-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics