Skip to main content

Biopreservation of Milk and Dairy Products

  • Chapter
  • First Online:
Food Biopreservation

Abstract

Milk may act as vehicle for human pathogenic bacteria (reviewed by Claeys et al. 2013). Pasteurization of milk before human consumption or for the manufacture of dairy products is often required or recommended. Pasteurizarion will decrease the background spoilage microbiota, but it will not yield a sterile product. Some traditional, highly appreciated fermented dairy foods are still made from raw milk, and there is an ongoing debate on the benefits of consuming raw milk versus pasteurized milk (Claeys et al. 2013). According to foodborne disease reports from different industrialized countries, milk and milk products are implicated in 1–5 % of the total bacterial foodborne outbreaks, with 39.1 % attributed to milk, 53.1 % to cheese and 7.8 % to other milk products (De Buyser et al. 2001; Claeys et al. 2013). Bacteriocins seem an attractive approach to improve the safety of milk and dairy products (especially in those made from raw milk), and at the same time may offer some potential technological applications such as in acceleration of cheese ripening (Table 5.1). The antimicrobial effects of bacteriocins and/or their produced strains have been investigated both in raw milks and in several types of dairy products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achemchem F, Abrini J, Martinez-Bueno M et al (2006) Control of Listeria monocytogenes in goat’s milk and goat’s jben by the bacteriocinogenic Enterococcus faecium F58 strain. J Food Protect 69:2370–2376

    Google Scholar 

  • Alpas H, Bozoglu F (2000) The combined effect of high hydrostatic pressure, heat and bacteriocins on inactivation of foodborne pathogens in milk and orange juice. World J Microb Biot 16:387–392

    Google Scholar 

  • Ananou S, Muñoz A, Martínez-Bueno M et al (2010) Evaluation of an enterocin AS-48 enriched bioactive powder obtained by spray drying. Food Microbiol 27:58–63

    CAS  Google Scholar 

  • Anastasiou R, Aktypis A, Georgalaki M et al (2009) Inhibition of Clostridium tyrobutyricum by Streptococcus macedonicus ACA-DC 198 under conditions mimicking Kasseri cheese production and ripening. Int Dairy J 19:330–335

    CAS  Google Scholar 

  • Arqués JL, Rodríguez E, Gaya P et al (2005a) Effect of combinations of high-pressure treatment and bacteriocin-producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese. Int Dairy J 15:893–900

    Google Scholar 

  • Arqués JL, Rodríguez E, Gaya P et al (2005b) Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. J Appl Microbiol 98:254–260

    Google Scholar 

  • Avila M, Garde S, Gaya P et al (2006) Effect of high-pressure treatment and a bacteriocin-producing lactic culture on the proteolysis, texture, and taste of Hispanico cheese. J Dairy Sci 89:2882–2893

    CAS  Google Scholar 

  • Benech RO, Kheadr EE, Lacroix C et al (2002a) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during Cheddar cheese ripening. Appl Environ Microbiol 68:5607–5619

    CAS  Google Scholar 

  • Benech RO, Kheadr EE, Lacroix C et al (2003) Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese. J Dairy Sci 86:1895–1909

    CAS  Google Scholar 

  • Benech RO, Kheadr EE, Laridi R et al (2002b) Inhibition of Listeria innocua in Cheddar cheese by addition of nisin Z in liposomes or in situ production by mixed culture. Appl Environ Microbiol 68:3683–3690

    CAS  Google Scholar 

  • Benkerroum N, Oubel H, Mimoun LB (2002) Behavior of Listeria monocytogenes and Staphylococcus aureus in yogurt fermented with a bacteriocin-producing thermophilic starter. J Food Prot 65:799–805

    CAS  Google Scholar 

  • Bizani D, Motta AS, Morrissy JAC et al (2005) Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int Microbiol 8:125–131

    CAS  Google Scholar 

  • Black EP, Kelly AL, Fitzgerald GF (2005) The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Inn Food Sci Emerg Technol 6:286–292

    CAS  Google Scholar 

  • Bogovič Matijašić B, Koman Rajšp M, Perko B et al (2007) Inhibition of Clostridium tyrobutyricum in cheese by Lactobacillus gasseri. Int Dairy J 17:157–166

    Google Scholar 

  • Bouksaim M, Lacroix C, Audet P et al (2000) Effects of mixed starter composition on nisin Z production by Lactococcus lactis subsp. lactis biovar. diacetylactis UL 719 during production and ripening of Gouda cheese. Int J Food Microbiol 59:141–156

    CAS  Google Scholar 

  • Buyong N, Kok J, Luchansky JB (1998) Use of a genetically enhanced, pediocin-producing starter-culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in Cheddar cheese. Appl Environ Microbiol 64:4842–4845

    CAS  Google Scholar 

  • Calderón-Miranda ML, Barbosa-Cánovas GV, Swanson BG (1999) Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin. Int J Food Microbiol 51:19–30

    Google Scholar 

  • Čanžek Majhenič A, Bogovič Matijašić B, Rogelj I (2003) Chromosomal location of genetic determinants for bacteriocins produced by Lactobacillus gasseri K7. J Dairy Res 70:199–203

    Google Scholar 

  • Cao-Hoang L, Chaine A, Grégoire L et al (2010) Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiol 27:940–944

    CAS  Google Scholar 

  • Capellas M, Mor-Mur M, Gervilla R et al (2000) Effect of high pressure combined with mild heat or nisin on inoculated bacteria and mesophiles of goats’ milk fresh cheese. Food Microbiol 17:633–641

    CAS  Google Scholar 

  • Claeys WL, Cardoen S, Daube G et al (2013) Raw or heated cow milk consumption: Review of risks and benefits. Food Control 31:251–262

    CAS  Google Scholar 

  • Cocolin L, Innocente N, Biasutti M et al (2004) The late blowing in cheese: a new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int J Food Microbiol 90:83–91

    CAS  Google Scholar 

  • Dal Bello B, Cocolin L, Zeppa G et al (2011) Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in cottage cheese. Int J Food Microbiol 153:58–65

    Google Scholar 

  • Davies EA, Bevis HE, Delves-Broughton J (1997) The use of the bacteriocin, nisin, as a preservative in ricotta-type cheeses to control the food-borne pathogen Listeria monocytogenes. Lett Appl Microbiol 24:343–346

    CAS  Google Scholar 

  • Davies EA, Delves-Broughton J (1999) Nisin. In: Robinson R, Batt C, Patel P (eds) Encyclopedia of food microbiology. Academic Press, London, pp 191–198

    Google Scholar 

  • De Buyser ML, Dufour B, Maire M et al (2001) Implication of milk and milk products in food-borne diseases in France and in different industrialized countries. Int J Food Microbiol 67:1–17

    Google Scholar 

  • De Vuyst L, Tsakalidou E (2008) Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int Dairy J 18:476–485

    Google Scholar 

  • Deegan LH, Cotter PD, Hill C et al (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    CAS  Google Scholar 

  • Dias BE, Galer CD, Moran JW et al (2009) Cheese flavoring systems prepared with bacteriocins. US Patent 7,556,833 (Appl. No.: 10/723,257)

    Google Scholar 

  • Ennahar S, Aoude-Werner D, Sorokine O et al (1996) Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl Environ Microbiol 62:4381–4387

    CAS  Google Scholar 

  • Farías ME, Nuñez de Kairuz M, Sesma F et al (1999) Inhibition of Listeria monocytogenes by the bacteriocin enterocin CRL35 during goat cheese making. Milchwissenschaft 54:30–32

    Google Scholar 

  • Fernández de Palencia P, de la Plaza M, Mohedano ML et al (2004) Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. Int J Food Microbiol 93:335–347

    Google Scholar 

  • Foulquié Moreno MR, Rea MC, Cogan TM et al (2003) Applicability of a bacteriocin-producing Enterococcus faecium as a co-culture in Cheddar cheese manufacture. Int J Food Microbiol 81:73–84

    Google Scholar 

  • Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E et al (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Google Scholar 

  • Fox PF, McSweeney PLH, Lynch CM (1998) Significance of non-starter lactic acid bacteria in cheddar cheese. Aust J Dairy Technol 53:83–89

    Google Scholar 

  • Franz CMAP, van Belkum MJ, Holzapfel WH et al (2007) Diversity of enterococcal bacteriocins and their grouping into a new classification scheme. FEMS Microbiol Rev 31:293–310

    CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL et al (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Google Scholar 

  • Gálvez A, Lopez RL, Abriouel H et al (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28:125–152

    Google Scholar 

  • Gálvez A, Valdivia E, Martínez-Bueno M et al (1990) Induction of autolysis in Enterococcus faecalis by peptide AS-48. J Appl Bacteriol 69:406–413

    Google Scholar 

  • García MT, Martínez Cañamero M, Lucas R et al (2004) Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int J Food Microbiol 90:161–170

    Google Scholar 

  • García-Graells C, Masschalck B, Michiels CW (1999) Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. J Food Prot 62:1248–1254

    Google Scholar 

  • Garde S, Ávila M, Arias R et al (2011) Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese. Int J Food Microbiol 150:59–65

    CAS  Google Scholar 

  • Garde S, Ávila M, Gaya P et al (2006) Proteolysis of Hispánico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639. J Dairy Sci 89:840–849

    CAS  Google Scholar 

  • Garde S, Ávila M, Medina M et al (2005) Influence of a bacteriocin-producing lactic culture on the volatile compounds, odour and aroma of Hispánico cheese. Int Dairy J 15:1034–1043

    CAS  Google Scholar 

  • Garde S, Tomillo J, Gaya P et al (2002) Proteolysis in Hispánico cheese manufactured using a mesophilic starter, a thermophilic starter, and bacteriocin-producing Lactococcus lactis subsp. lactis INIA 415 adjunct culture. J Agric Food Chem 50:3479–3485

    CAS  Google Scholar 

  • Giraffa G (1995) Enterococcal bacteriocins: their potential as anti-Listeria factors in dairy technology. Food Microbiol 12:291–299

    CAS  Google Scholar 

  • Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88(2–3):215–222

    CAS  Google Scholar 

  • Giraffa G, Carminati D (1997) Control of Listeria monocytogenes in the rind of Taleggio, a surface-smear cheese, by a bacteriocin from Enterococcus faecium 7C5. Sci Aliment 17:383–391

    CAS  Google Scholar 

  • Giraffa G, Carminati D, Tarelli GT (1995a) Inhibition of Listeria innocua in milk by bacteriocin-producing Enterococcus faecium 7C5. J Food Protect 58:621–623

    Google Scholar 

  • Giraffa G, Picchioni N, Neviani E et al (1995b) Production and stability of an Enterococcus faecium bacteriocin during Taleggio cheesemaking and ripening. Food Microbiol 12:301–307

    CAS  Google Scholar 

  • Gonzalez CF, Kunka BS (1987) Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl Environ Microbiol 53:2534–2538

    CAS  Google Scholar 

  • Grande MJ, Lucas R, Abriouel H et al (2006a) Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int J Food Microbiol 106:185–194

    CAS  Google Scholar 

  • Grande MJ, Lucas R, Abriouel H et al (2006b) Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48. J Appl Microbiol 101:422–428

    CAS  Google Scholar 

  • Grattepanche F, Audet P, Lacroix C (2007) Milk fermentation by functional mixed culture producing nisin Z and exopolysaccharides in a fresh cheese model. Int Dairy J 17:123–132

    CAS  Google Scholar 

  • Guinane CM, Cotter PD, Hill C et al (2005) Microbial solutions to microbial problems: Lactococcal bacteriocins for the control of undesirable biota in food. J Appl Microbiol 98:1316–1325

    CAS  Google Scholar 

  • He L, Chen W (2006) Synergetic activity of nisin with cell-free supernatant of Bacillus licheniformis ZJU12 against food-borne bacteria. Food Res Int 39:905–909

    CAS  Google Scholar 

  • Holo H, Faye T, Brede DA et al (2002) Bacteriocins of propionic acid bacteria. Lait 82:59–68

    CAS  Google Scholar 

  • Iseppi R, Pilati F, Marini M et al (2008) Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int J Food Microbiol 123:281–287

    CAS  Google Scholar 

  • Izquierdo E, Marchioni E, Aoude-Werner D et al (2009) Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 26:16–20

    CAS  Google Scholar 

  • Lauková A, Czikková S (2001) Antagonistic effect of enterocin CCM 4231 from Enterococcus faecium on “bryndza,” a traditional Slovak dairy product from sheep milk. Microbiol Res 156:31–34

    Google Scholar 

  • Lauková A, Czikková S, Burdová O (1999) Anti-staphylococcal effect of enterocin in Sunar® and yogurt. Folia Microbiol 44(6):707–711

    Google Scholar 

  • Lauková A, Vlaemynick G, Czikková S (2001) Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol 46:157–160

    Google Scholar 

  • Le Bourhis AG, Doré J, Carlier JP et al (2007) Contribution of C. beijerinckii and C. sporogenes in association with C. tyrobutyricum to the butyric fermentation in Emmental type cheese. Int J Food Microbiol 113:154–163

    Google Scholar 

  • Lee CH, Park H, Lee DS (2004) Influence of antimicrobial packaging on kinetics of spoilage microbial growth in milk and orange juice. J Food Eng 65:527–531

    Google Scholar 

  • Liu L, O’Conner P, Cotter PD et al (2008) Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin A by Lactococcus lactis. J Appl Microbiol 104:1059–1066

    CAS  Google Scholar 

  • López-Pedemonte TJ, Roig-Sagués AX, Trujillo AJ (2003) Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin of lysozyme. J Dairy Sci 86:3075–3081

    Google Scholar 

  • Lortal S, Chapot-Chartier MP (2005) Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int Dairy J 15:857–871

    CAS  Google Scholar 

  • Malheiros PS, Sant’Anna V, Barbosa MS et al (2012) Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int J Food Microbiol 156(3):272–277

    CAS  Google Scholar 

  • Martínez Viedma P, Abriouel H, Ben Omar N (2009a) Anti-staphylococcal effect of enterocin AS-48 in bakery ingredients of vegetable origin, alone and in combination with selected antimicrobials. J Food Sci 74:M384–M389

    Google Scholar 

  • Martínez-Viedma P, Abriouel H, Ben Omar N et al (2009b) Assay of enterocin AS-48 for inhibition of foodborne pathogens in desserts. J Food Protect 72:1654–1659

    Google Scholar 

  • Martínez-Cuesta M, Bengoechea J, Bustos I et al (2010) Control of late blowing in cheese by adding lacticin 3147-producing Lactococcus lactis IFPL 3593 to the starter. Int Dairy J 20:18–24

    Google Scholar 

  • Mathot AG, Beliard E, Thuault D (2003) Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. J Dairy Sci 86:3068–3074

    CAS  Google Scholar 

  • Mauriello G, De Luca E, La Storia A et al (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41:464–469

    CAS  Google Scholar 

  • McAuliffe O, Hill C, Ross RP (1999) Inhibition of Listeria monocytogenes in cottage cheese manufactured with a lacticin 3147-producing starter culture. J Appl Microbiol 86(2):251–256

    CAS  Google Scholar 

  • McSweeney PLH, Fox PF (2004) Metabolism of residual lactose and of lactate and citrate. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: chemistry, physics and microbiology, vol. 1: general aspects, 3rd edn. Elsevier Academic Press, London, pp 361–371

    Google Scholar 

  • Mills S, Serrano LM, Griffin C et al (2011) Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microb Cell Fact 10(Suppl 1):S7

    Google Scholar 

  • Mollet B, Peel J, Pridmore D et al (2004) Bactericide compositions prepared and obtained from Microccus varians. US Patent 6,689,750 (Appl. No.: 08/693,353)

    Google Scholar 

  • Morgan S, Ross RP, Hill C (1997) Increasing starter cell lysis in Cheddar cheese using a bacteriocin-producing adjunct. J Dairy Sci 8:1–10

    Google Scholar 

  • Morgan SM, Garvin M, Ross RP et al (2001) Evaluation of a spray-dried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Lett Appl Microbiol 33:387–391

    CAS  Google Scholar 

  • Morgan SM, O’Sullivan L, Ross RP et al (2002) The design of a three strain starter system for Cheddar cheese manufacture exploiting bacteriocin-induced starter lysis. Int Dairy J 12:985–993

    CAS  Google Scholar 

  • Morgan SM, Ross RP, Beresford T et al (2000) Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. J Appl Microbiol 88(3):414–420

    CAS  Google Scholar 

  • Muñoz A, Ananou S, Gálvez A et al (2007) Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism through heat and AS-48. Int Dairy J 17:760–769

    Google Scholar 

  • Muñoz A, Maqueda M, Gálvez A et al (2004) Biocontrol of psychrotrophic enterotoxigenic Bacillus cereus in a non fat hard type cheese by an enterococcal strain-producing enterocin AS-48. J Food Prot 67:1517–1521

    Google Scholar 

  • Nes IF, Diep DB, Havarstein LS et al (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70:113–128

    CAS  Google Scholar 

  • Núñez M, Rodríguez JL, García E (1997) Inhibition of Listeria monocytogenes by enterocin 4 during the manufacture and ripening of Manchego cheese. J Appl Microbiol 83:671–677

    Google Scholar 

  • O’Sullivan L, Morgan SM, Ross RP et al (2002a) Elevated enzyme release from lactococcal starter cultures on exposure to the lantibiotic lacticin 481, produced by Lactococcus lactis DPC5552. J Dairy Sci 85:2130–2140

    Google Scholar 

  • O’Sullivan L, O’Connor EB, Ross RP et al (2006) Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J Appl Microbiol 100:135–143

    Google Scholar 

  • O’Sullivan L, Ross RP, Hill C (2002b) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604

    Google Scholar 

  • O’Sullivan L, Ryan MP, Ross RP et al (2003) Generation of food-grade lactococcal starters which produce the lantibiotics lacticin 3147 and lacticin 481. Appl Environ Microbiol 69:3681–3685

    Google Scholar 

  • Papagianni M, Anastasiadou S (2009) Pediocins: the bacteriocins of pediococci. Sources, production, properties and applications. Microb Cell Fact 8:3

    Google Scholar 

  • Peláez C, Requena T (2005) Exploiting the potential of bacteria in the cheese ecosystem. Int Dairy J 15:831–844

    Google Scholar 

  • Plockova M, Stepanek M, Demnerova K et al (1996) Effect of nisin for improvement in shelf life and quality of processed cheese. Adv Food Sci 18:78–83

    CAS  Google Scholar 

  • Pol IE, Mastwijk HC, Slump RA et al (2001) Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment, and carvacrol. J Food Prot 64:1012–1018

    CAS  Google Scholar 

  • Reviriego C, Fernández A, Horn N et al (2005) Production of pediocin PA-1, and coproduction of nisin A and pediocin PA-1, by wild Lactococcus lactis strains of dairy origin. Int Dairy J 15:45–49

    CAS  Google Scholar 

  • Rilla N, Martínez B, Delgado T et al (2003) Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. lactis IPLA 729, a nisin Z producer. Int J Food Microbiol 85:23–33

    CAS  Google Scholar 

  • Roberts RF, Zottola EA, McKay LL (1992) Use of nisin-producing starter cultures suitable for Cheddar cheese manufacture. J Dairy Sci 75:2353–2363

    CAS  Google Scholar 

  • Rodríguez E, Arques JL, Nuñez M et al (2005) Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Appl Environ Microbiol 71:3399–3404

    Google Scholar 

  • Rodríguez JL, Gaya P, Medina M (1997) Bactericidal effect of enterocin 4 on Listeria monocytogenes in a model dairy system. J Food Prot 60:28–32

    Google Scholar 

  • Rodríguez JM, Martinez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42:91–121

    Google Scholar 

  • Ross RP, Galvin M, McAuliffe O et al (1999) Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek 76:337–346

    CAS  Google Scholar 

  • Ryan MP, Rea MC, Hill C et al (1996) An application in Cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62(612):619

    Google Scholar 

  • Ryan MP, Ross RP, Hill C (2001) Strategy for manipulation of cheese flora using combinations of lacticin 3147-producing and -resistant cultures. Appl Environ Microbiol 67:2699–2704

    CAS  Google Scholar 

  • Sallami L, Kheadr EE, Fliss I et al (2004) Impact of autolytic, proteolytic and nisin-producing adjunct cultures on biochemical and textural properties of Cheddar cheese. J Dairy Sci 87:1585–1594

    CAS  Google Scholar 

  • Scannell AG, Hill C, Ross RP et al (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol 60:241–249

    CAS  Google Scholar 

  • Sebti I, Delves-Broughton J, Coma V (2003) Physicochemical properties and bioactivity of nisin-containing cross-linked hydroxypropylmethylcellulose films. J Agric Food Chem 51:6468–6474

    CAS  Google Scholar 

  • Smith K, Mittal GS, Griffiths MW (2002) Pasteurization of milk using pulsed electrical field and antimicrobials. J Food Sci 6:2304–2308

    Google Scholar 

  • Sobrino A, Martínez Viedma P, Abriouel H et al (2009) The impact of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by High-intensity pulsed electric field. J Dairy Sci 92:2514–2523

    Google Scholar 

  • Sobrino-López A, Martín-Belloso O (2008) Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 18:329–343

    Google Scholar 

  • Sobrino-López A, Raybaudi-Massilia R, Martín-Belloso O (2006) Enhancing inactivation of Staphylococcus aureus in skim milk by combining high intensity pulsed electric fields and nisin. J Food Protect 69:345–353

    Google Scholar 

  • Somkuti GA, Steinberg DH (2010) Pediocin production in milk by Pediococcus acidilactici in co-culture with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. J Ind Microbiol Biotechnol 37:65–69

    CAS  Google Scholar 

  • Terebiznik MR, Jagus RJ, Cerrutti P et al (2002) Inactivation of Escherichia coli by a combination of nisin, pulsed electric fields, and water activity reduction by sodium chloride. J Food Prot 65:1253–1258

    CAS  Google Scholar 

  • Thomas LV, Clarkson MR, Delves-Broughton J (2000) Nisin. In: Naidu AS (ed) Natural food antimicrobial systems. CRC-Press, Boca Raton, FL, pp 463–524

    Google Scholar 

  • Thomas LV, Delves-Broughton J (2001) New advances in the application of the food preservative nisin. Adv Food Sci 2:11–22

    Google Scholar 

  • Vedamuthu Ebenezer R (1995) Method of producing a yogurt product containing bacteriocin PA-1. US Patent 5,445,835 (Appl. No.: 08/192,960)

    Google Scholar 

  • Vera Pingitore E, Todorov SD, Sesma F et al (2012) Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol 32(1):38–47

    Google Scholar 

  • Weber GH, Broich WA (1986) Shelf-life extension of cultured dairy foods. C Dairy Prod J 21:19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Gálvez, A., López, R.L., Pulido, R.P., Burgos, M.J.G. (2014). Biopreservation of Milk and Dairy Products. In: Food Biopreservation. SpringerBriefs in Food, Health, and Nutrition. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2029-7_5

Download citation

Publish with us

Policies and ethics