Skip to main content

Exercise and Bone Health

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Bone mass begins to decrease well before the menopause in women (as early as the 20s in the femur of sedentary women), and accelerates in the perimenopausal years, with continued declines into late old age. Similar patterns are seen in men, without the acceleration related to loss of ovarian function seen in women (Glynn et al. J Bone Miner Res 10:1769–1777, 1995). As with losses of muscle mass and strength (sarcopenia), many genetic, lifestyle, nutritional, disease, and medication-related factors enter into the prediction of bone density at a given age. It is important for health care professionals to understand the rationale and current recommendations for the use of exercise in the prevention and treatment of osteoporosis and osteoporotic fracture, and to place it in context with the other available strategies for this syndrome. The optimal use of exercise in this syndrome is dependent upon the prescription and adoption of a sustained, adequate dose of an evidence-based modality of exercise/physical activity in the target populations, while minimizing the risk of side effects. The phase of the lifecycle is of particular relevance to bone health, as the goal of exercise for fracture prevention shifts dramatically over the course of the lifespan; from an emphasis on achievement of peak bone mass in childhood and adolescence, to the preservation of bone and muscle strength and mass in middle age, to the optimization of gait and balance, muscle strength, frailty, undernutrition, neuropsychological function and polypharmacy in old age. A summary of the current evidence base, as well as the author’s recommendations for effective and safe implementation of physical activity in various settings is reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazess RB. On aging bone loss. Clin Orthop Relat Res. 1982;165:239–52.

    PubMed  Google Scholar 

  2. Glynn NW, Meilahn EN, Charron M, Anderson SJ, Kuller LH, Cauley JA. Determinants of bone mineral density in older men. J Bone Miner Res. 1995;10:1769–77.

    CAS  PubMed  Google Scholar 

  3. Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12:433–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Matkovic V, Jelic T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93:799–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Nguyen TV, Kelly PJ, Sambrook PN, Gilbert C, Pocock NA, Eisman JA. Lifestyle factors and bone density in the elderly: implications for osteoporosis prevention. J Bone Miner Res. 1994;9:1339–46.

    CAS  PubMed  Google Scholar 

  6. Ward JA, Lord SR, Williams P, Anstey K, Zivanovic E. Physiologic, health and lifestyle factors associated with femoral neck bone density in older women. Bone. 1995;16:373S–8.

    CAS  PubMed  Google Scholar 

  7. Snow-Harter C, Whalen R, Myburgh K, Arnaud S, Marcus R. Bone mineral density, muscle strength, and recreational exercise in men. J Bone Miner Res. 1992;7:1291–6.

    CAS  PubMed  Google Scholar 

  8. Tajima O, Ashizawa N, Ishii T, et al. Interaction of the effects between vitamin D receptor polymorphism and exercise training on bone metabolism. J Appl Physiol. 2000;88:1271–6.

    CAS  PubMed  Google Scholar 

  9. Ulrich CM, Georgiou CC, Snow-Harter CM, Gillis DE. Bone mineral density in mother-daughter pairs: relations to lifetime exercise, lifetime milk consumption, and calcium supplements. Am J Clin Nutr. 1996;63:72–9.

    CAS  PubMed  Google Scholar 

  10. Young D, Hopper JL, Nowson CA, et al. Determinants of bone mass in 10- to 26-year-old females: a twin study. J Bone Miner Res. 1995;10:558–67.

    CAS  PubMed  Google Scholar 

  11. Pocock N, Eisman J, Gwinn T, et al. Muscle strength, physical fitness, and weight but not age predict femoral neck bone mass. J Bone Miner Res. 1989;4:441–8.

    CAS  PubMed  Google Scholar 

  12. May H, Murphy S, Khaw KT. Alcohol consumption and bone mineral density in older men. Gerontology. 1995;41:152–8.

    CAS  PubMed  Google Scholar 

  13. Barengolts EI, Curry DJ, Bapna MS, Kukreja SC. Effects of two non-endurance exercise protocols on established bone loss in ovariectomized adult rats. Calcif Tissue Int. 1993;52:239–43.

    CAS  PubMed  Google Scholar 

  14. Barengolts EI, Curry DJ, Bapna MS, Kukreja SC. Effects of endurance exercise on bone mass and mechanical properties in intact and ovariectomized rats. J Bone Miner Res. 1993;8:937–42.

    CAS  PubMed  Google Scholar 

  15. Notomi T, Lee SJ, Okimoto N, et al. Effects of resistance exercise training on mass, strength, and turnover of bone in growing rats. Eur J Appl Physiol. 2000;82:268–74.

    CAS  PubMed  Google Scholar 

  16. Ryan AS, Treuth MS, Rubin MA, et al. Effects of strength training on bone mineral density: hormonal and bone turnover relationships. J Appl Physiol. 1994;77:1678–84.

    CAS  PubMed  Google Scholar 

  17. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66:397–402.

    CAS  PubMed  Google Scholar 

  18. Mazess RB, Whedon GD. Immobilization and bone. Calcif Tissue Int. 1983;35:265–7.

    CAS  PubMed  Google Scholar 

  19. Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: the bone modeling problem. Anat Rec. 1990;226:403–13.

    CAS  PubMed  Google Scholar 

  20. Smith EL, Gilligan C. Physical activity effects on bone metabolism. Calcif Tissue Int. 1991;49(Suppl):S50–4.

    PubMed  Google Scholar 

  21. Greenleaf JSK. Physiological consequences of reduced physical activity during bedrest. Exerc Sci Sports Rev. 1982;10:84–119.

    CAS  Google Scholar 

  22. Tallarida G, Peruzzi G, Castrucci F, et al. Dynamic and static exercises in the countermeasure programmes for musculo-skeletal and cardiovascular deconditioning in space. Physiologist. 1991;34:S114–7.

    CAS  PubMed  Google Scholar 

  23. Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE. Effect of prolonged bed rest on bone mineral. Metabolism. 1970;19:1071–84.

    CAS  PubMed  Google Scholar 

  24. Giangregorio L, Blimkie CJ. Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis. Sports Med. 2002;32:459–76.

    PubMed  Google Scholar 

  25. Huddleston AL, Rockwell D, Kulund DN, Harrison RB. Bone mass in lifetime tennis athletes. JAMA. 1980;244:1107–9.

    CAS  PubMed  Google Scholar 

  26. Talmage RV, Stinnett SS, Landwehr JT, Vincent LM, McCartney WH. Age-related loss of bone mineral density in non-athletic and athletic women. Bone Miner. 1986;1:115–25.

    CAS  PubMed  Google Scholar 

  27. Chilibeck PD, Sale DG, Webber CE. Exercise and bone mineral density. Sports Med. 1995;19:103–22.

    CAS  PubMed  Google Scholar 

  28. Taaffe DR, Snow-Harter C, Connolly DA, Robinson TL, Brown MD, Marcus R. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J Bone Miner Res. 1995;10:586–93.

    CAS  PubMed  Google Scholar 

  29. Snow-Harter CM. Bone health and prevention of osteoporosis in active and athletic women. Clin Sports Med. 1994;13:389–404.

    CAS  PubMed  Google Scholar 

  30. Hagberg JM, Zmuda JM, McCole SD, et al. Moderate physical activity is associated with higher bone mineral density in postmenopausal women. J Am Geriatr Soc. 2001;49:1411–7.

    CAS  PubMed  Google Scholar 

  31. Aloia JF, Vaswani AN, Yeh JK, Cohn SH. Premenopausal bone mass is related to physical activity. Arch Intern Med. 1988;148:121–3.

    CAS  PubMed  Google Scholar 

  32. Aloia JF, Cohn SH, Ostuni JA, Cane R, Ellis K. Prevention of involutional bone loss by exercise. Ann Intern Med. 1978;89:356–8.

    CAS  PubMed  Google Scholar 

  33. Krall EA, Dawson-Hughes B. Walking is related to bone density and rates of bone loss. Am J Med. 1994;96:20–6.

    CAS  PubMed  Google Scholar 

  34. Lauritzen JB, McNair PA, Lund B. Risk factors for hip fractures. A review. Dan Med Bull. 1993;40:479–85.

    CAS  PubMed  Google Scholar 

  35. White L, Farmer M, Brody J. Who is at risk? Hip fracture epidemiology report. J Gerontol Nurs. 1984;10:26–30.

    CAS  PubMed  Google Scholar 

  36. Farmer ME, Harris T, Madans JH, Wallace RB, Cornoni-Huntley J, White LR. Anthropometric indicators and hip fracture. The NHANES I epidemiologic follow-up study. J Am Geriatr Soc. 1989;37:9–16.

    CAS  PubMed  Google Scholar 

  37. Grisso JA, Kelsey JL, Strom BL, et al. Risk factors for falls as a cause of hip fracture in women. The Northeast Hip Fracture Study Group. N Engl J Med. 1991;324:1326–31.

    CAS  PubMed  Google Scholar 

  38. Lau EM, Donnan SP. Falls and hip fracture in Hong Kong Chinese. Public Health. 1990;104:117–21.

    CAS  PubMed  Google Scholar 

  39. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332:767–73.

    CAS  PubMed  Google Scholar 

  40. Coupland C, Wood D, Cooper C. Physical inactivity is an independent risk factor for hip fracture in the elderly. J Epidemiol Community Health. 1993;47:441–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cavanaugh DJ, Cann CE. Brisk walking does not stop bone loss in postmenopausal women. Bone. 1988;9:201–4.

    CAS  PubMed  Google Scholar 

  42. Vuillemin A, Guillemin F, Jouanny P, Denis G, Jeandel C. Differential influence of physical activity on lumbar spine and femoral neck bone mineral density in the elderly population. J Gerontol A Biol Sci Med Sci. 2001;56:B248–53.

    CAS  PubMed  Google Scholar 

  43. Need AG, Wishart JM, Scopacasa F, Horowitz M, Morris HA, Nordin BE. Effect of physical activity on femoral bone density in men. BMJ. 1995;310:1501–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kenny AM, Prestwood KM, Marcello KM, Raisz LG. Determinants of bone density in healthy older men with low testosterone levels. J Gerontol A Biol Sci Med Sci. 2000;55:M492–7.

    CAS  PubMed  Google Scholar 

  45. Greendale GA, Barrett-Connor E, Edelstein S, Ingles S, Haile R. Lifetime leisure exercise and osteoporosis. The Rancho Bernardo study. Am J Epidemiol. 1995;141:951–9.

    CAS  PubMed  Google Scholar 

  46. Paganini-Hill A, Chao A, Ross RK, Henderson BE. Exercise and other factors in the prevention of hip fracture: the Leisure World study. Epidemiology. 1991;2:16–25.

    CAS  PubMed  Google Scholar 

  47. Langsetmo L, Hitchcock CL, Kingwell EJ, et al. Physical activity, body mass index and bone mineral density-associations in a prospective population-based cohort of women and men: the Canadian Multicentre Osteoporosis Study (CaMos). Bone. 2012;50:401–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Gregg EW, Cauley JA, Seeley DG, Ensrud KE, Bauer DC. Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1998;129:81–8.

    CAS  PubMed  Google Scholar 

  49. Lee SH, Dargent-Molina P, Breart G. Study EGEdlO. Risk factors for fractures of the proximal humerus: results from the EPIDOS prospective study. J Bone Miner Res. 2002;17:817–25.

    PubMed  Google Scholar 

  50. Moayyeri A, Besson H, Luben RN, Wareham NJ, Khaw KT. The association between physical activity in different domains of life and risk of osteoporotic fractures. Bone. 2010;47:693–700.

    PubMed  Google Scholar 

  51. Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol. 2008;18:827–35.

    PubMed  Google Scholar 

  52. Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res. 1998;16:482–9.

    CAS  PubMed  Google Scholar 

  53. Jarvinen TL, Kannus P, Sievanen H, Jolma P, Heinonen A, Jarvinen M. Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res. 1998;13:1475–82.

    CAS  PubMed  Google Scholar 

  54. Vuori I. Peak bone mass and physical activity: a short review. Nutr Rev. 1996;54:S11–4.

    CAS  PubMed  Google Scholar 

  55. Forwood MR, Burr DB. Physical activity and bone mass: exercises in futility? Bone Miner. 1993;21:89–112.

    CAS  PubMed  Google Scholar 

  56. Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14:843–7.

    CAS  PubMed  Google Scholar 

  57. Kirchner EM, Lewis RD, O’Connor PJ. Bone mineral density and dietary intake of female college gymnasts. Med Sci Sports Exerc. 1995;27:543–9.

    CAS  PubMed  Google Scholar 

  58. Heinonen A, Oja P, Kannus P, Sievanen H, Manttari A, Vuori I. Bone mineral density of female athletes in different sports. Bone Miner. 1993;23:1–14.

    CAS  PubMed  Google Scholar 

  59. Lima F, De Falco V, Baima J, Carazzato JG, Pereira RM. Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med Sci Sports Exerc. 2001;33:1318–23.

    CAS  PubMed  Google Scholar 

  60. Haapasalo H, Kannus P, Sievanen H, Heinonen A, Oja P, Vuori I. Long-term unilateral loading and bone mineral density and content in female squash players. Calcif Tissue Int. 1994;54:249–55.

    CAS  PubMed  Google Scholar 

  61. Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone. 1994;15:279–84.

    CAS  PubMed  Google Scholar 

  62. Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:500–7.

    CAS  PubMed  Google Scholar 

  63. Karlsson MK, Linden C, Karlsson C, Johnell O, Obrant K, Seeman E. Exercise during growth and bone mineral density and fractures in old age. Lancet. 2000;355:469–70.

    CAS  PubMed  Google Scholar 

  64. Nordstrom A, Karlsson C, Nyquist F, Olsson T, Nordstrom P, Karlsson M. Bone loss and fracture risk after reduced physical activity. J Bone Miner Res. 2005;20:202–7.

    PubMed  Google Scholar 

  65. Kettunen JA, Impivaara O, Kujala UM, et al. Hip fractures and femoral bone mineral density in male former elite athletes. Bone. 2010;46:330–5.

    PubMed  Google Scholar 

  66. Gregg EW, Pereira MA, Caspersen CJ. Physical activity, falls, and fractures among older adults: a review of the epidemiologic evidence. J Am Geriatr Soc. 2000;48:883–93.

    CAS  PubMed  Google Scholar 

  67. Bouxsein ML, Marcus R. Overview of exercise and bone mass. Rheum Dis Clin North Am. 1994;20:787–802.

    CAS  PubMed  Google Scholar 

  68. Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I. Bone mineral density and muscle strength of lower extremities after long-term strength training, subsequent knee ligament injury and rehabilitation: a unique 2-year follow-up of a 26-year-old female student. Bone. 1994;15:85–90.

    CAS  PubMed  Google Scholar 

  69. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40:14–27.

    CAS  PubMed  Google Scholar 

  70. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16:148–56.

    CAS  PubMed  Google Scholar 

  71. Johannsen N, Binkley T, Englert V, Neiderauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33:533–9.

    PubMed  Google Scholar 

  72. McKay HA, MacLean L, Petit M, et al. “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med. 2005;39:521–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003;112:e447.

    PubMed  Google Scholar 

  74. Mackelvie KJ, McKay HA, Khan KM, Crocker PR. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001;139:501–8.

    CAS  PubMed  Google Scholar 

  75. MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM. Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res. 2002;17:834–44.

    CAS  PubMed  Google Scholar 

  76. MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34:755–64.

    PubMed  Google Scholar 

  77. Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17:363–72.

    CAS  PubMed  Google Scholar 

  78. Meyer U, Romann M, Zahner L, et al. Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone. 2011;48:792–7.

    PubMed  Google Scholar 

  79. Macdonald HM, Kontulainen SA, Petit MA, Beck TJ, Khan KM, McKay HA. Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children? Osteoporos Int. 2008;19:1445–56.

    CAS  PubMed  Google Scholar 

  80. Bradney M, Pearce G, Naughton G, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13:1814–21.

    CAS  PubMed  Google Scholar 

  81. French SA, Fulkerson JA, Story M. Increasing weight-bearing physical activity and calcium intake for bone mass growth in children and adolescents: a review of intervention trials. Prev Med. 2000;31:722–31.

    CAS  PubMed  Google Scholar 

  82. Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47.

    PubMed Central  PubMed  Google Scholar 

  83. Foley S, Quinn S, Dwyer T, Venn A, Jones G. Measures of childhood fitness and body mass index are associated with bone mass in adulthood: a 20-year prospective study. J Bone Miner Res. 2008;23:994–1001.

    PubMed  Google Scholar 

  84. Ma D, Jones G. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res. 2003;18:1970–7.

    PubMed  Google Scholar 

  85. Okano H, Mizunuma H, Soda M, et al. Effects of exercise and amenorrhea on bone mineral density in teenage runners. Endocr J. 1995;42:271–6.

    CAS  PubMed  Google Scholar 

  86. Hetland ML, Haarbo J, Christiansen C, Larsen T. Running induces menstrual disturbances but bone mass is unaffected, except in amenorrheic women. Am J Med. 1993;95:53–60.

    CAS  PubMed  Google Scholar 

  87. Babatunde OO, Forsyth JJ, Gidlow CJ. A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women. Osteoporos Int. 2012;23:109–19.

    CAS  PubMed  Google Scholar 

  88. Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int. 1997;7:331–7.

    CAS  PubMed  Google Scholar 

  89. Howe TE, Shea B, Dawson LJ, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 2011:CD000333.

    Google Scholar 

  90. Kelley G. Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. J Am Geriatr Soc. 1998;46:143–52.

    CAS  PubMed  Google Scholar 

  91. Kelley GA. Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med. 1998;27:798–807.

    CAS  PubMed  Google Scholar 

  92. Kelley GA. Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil. 1998;77:76–87.

    CAS  PubMed  Google Scholar 

  93. Kelley GA, Kelley KS. Exercise and bone mineral density at the femoral neck in postmenopausal women: a meta-analysis of controlled clinical trials with individual patient data. Am J Obstet Gynecol. 2006;194:760–7.

    PubMed  Google Scholar 

  94. Kelley GA, Kelley KS, Kohrt WM. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2012;13:177.

    PubMed Central  PubMed  Google Scholar 

  95. Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in men: a meta-analysis of randomized controlled trials. Bone. 2013;53:103–11.

    CAS  PubMed  Google Scholar 

  96. Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in premenopausal women: a meta-analysis of randomized controlled trials. Int J Endocrinol. 2013;2013:741639.

    PubMed Central  PubMed  Google Scholar 

  97. Kelley GA, Kelley KS, Tran ZV. Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil. 2001;80:65–77.

    CAS  PubMed  Google Scholar 

  98. Kelley GA, Kelley KS, Tran ZV. Exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis of individual patient data. J Gerontol A Biol Sci Med Sci. 2002;57:M599–604.

    PubMed  Google Scholar 

  99. Kemmler W, Haberle L, von Stengel S. Effects of exercise on fracture reduction in older adults: a systematic review and meta-analysis. Osteoporos Int. 2013;24:1937–50.

    CAS  PubMed  Google Scholar 

  100. Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age. 2012;34:1493–515.

    PubMed Central  PubMed  Google Scholar 

  101. Martyn-St James M, Carroll S. High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006;17:1225–40.

    CAS  PubMed  Google Scholar 

  102. Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43:521–31.

    PubMed  Google Scholar 

  103. Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009;43:898–908.

    CAS  PubMed  Google Scholar 

  104. Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab. 2010;28:251–67.

    PubMed  Google Scholar 

  105. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67:10–8.

    CAS  PubMed  Google Scholar 

  106. Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int. 1999;9:1–12.

    CAS  PubMed  Google Scholar 

  107. Zhang J, Gao R, Cao P, Yuan W. Additive effects of antiresorptive agents and exercise on lumbar spine bone mineral density in adults with low bone mass: a meta-analysis. Osteoporos Int. 2014;25:1585–94.

    CAS  PubMed  Google Scholar 

  108. Heinonen A, Kannus P, Sievanen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet. 1996;348:1343–7.

    CAS  PubMed  Google Scholar 

  109. Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int. 1994;4:72–5.

    CAS  PubMed  Google Scholar 

  110. Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13:1805–13.

    CAS  PubMed  Google Scholar 

  111. Snow CM, Shaw JM, Winters KM, Witzke KA. Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. J Gerontol A Biol Sci Med Sci. 2000;55:M489–91.

    CAS  PubMed  Google Scholar 

  112. Kelley GA, Kelley KS. Dropouts and compliance in exercise interventions targeting bone mineral density in adults: a meta-analysis of randomized controlled trials. J Osteoporos. 2013;2013:250423.

    PubMed Central  PubMed  Google Scholar 

  113. Vuori I, Heinonen A, Sievanen H, Kannus P, Pasanen M, Oja P. Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones. Calcif Tissue Int. 1994;55:59–67.

    CAS  PubMed  Google Scholar 

  114. Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000;15:2495–503.

    CAS  PubMed  Google Scholar 

  115. Ernst E. Exercise for female osteoporosis. A systematic review of randomised clinical trials. Sports Med. 1998;25:359–68.

    CAS  PubMed  Google Scholar 

  116. Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–6.

    PubMed  Google Scholar 

  117. Snow-Harter C, Bouxsein ML, Lewis BT, Carter DR, Marcus R. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res. 1992;7:761–9.

    CAS  PubMed  Google Scholar 

  118. Friedlander AL, Genant HK, Sadowsky S, Byl NN, Gluer CC. A two-year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res. 1995;10:574–85.

    CAS  PubMed  Google Scholar 

  119. Hakkinen A, Sokka T, Kotaniemi A, Hannonen P. A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis. Arthritis Rheum. 2001;44:515–22.

    CAS  PubMed  Google Scholar 

  120. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 1994;8:875–8.

    CAS  PubMed  Google Scholar 

  121. Iwamoto J, Takeda T, Ichimura S. Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. J Orthop Sci. 2001;6:128–32.

    CAS  PubMed  Google Scholar 

  122. Ebrahim S, Thompson PW, Baskaran V, Evans K. Randomized placebo-controlled trial of brisk walking in the prevention of postmenopausal osteoporosis. Age Ageing. 1997;26:253–60.

    CAS  PubMed  Google Scholar 

  123. Kerr D, Ackland T, Maslen B, Morton A, Prince R. Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res. 2001;16:175–81.

    CAS  PubMed  Google Scholar 

  124. Brochu M, Starling RD, Tchernof A, Matthews DE, Garcia-Rubi E, Poehlman ET. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J Clin Endocrinol Metab. 2000;85:2378–84.

    CAS  PubMed  Google Scholar 

  125. Nelson ME, Fisher EC, Dilmanian FA, Dallal GE, Evans WJ. A 1-y walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr. 1991;53:1304–11.

    CAS  PubMed  Google Scholar 

  126. McMurdo ME, Mole PA, Paterson CR. Controlled trial of weight bearing exercise in older women in relation to bone density and falls. BMJ. 1997;314:569.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. McCartney N, Hicks AL, Martin J, Webber CE. Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerontol A Biol Sci Med Sci. 1995;50:B97–104.

    CAS  PubMed  Google Scholar 

  128. Rhodes EC, Martin AD, Taunton JE, Donnelly M, Warren J, Elliot J. Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med. 2000;34:18–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Kohrt WM, Ehsani AA, Birge Jr SJ. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res. 1997;12:1253–61.

    CAS  PubMed  Google Scholar 

  130. Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA. 1994;272:1909–14.

    CAS  PubMed  Google Scholar 

  131. Heinonen A, Oja P, Sievanen H, Pasanen M, Vuori I. Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. J Bone Miner Res. 1998;13:483–90.

    CAS  PubMed  Google Scholar 

  132. Humphries B, Newton RU, Bronks R, et al. Effect of exercise intensity on bone density, strength, and calcium turnover in older women. Med Sci Sports Exerc. 2000;32:1043–50.

    CAS  PubMed  Google Scholar 

  133. Sinaki M, Wahner HW, Bergstralh EJ, et al. Three-year controlled, randomized trial of the effect of dose-specified loading and strengthening exercises on bone mineral density of spine and femur in nonathletic, physically active women. Bone. 1996;19:233–44.

    CAS  PubMed  Google Scholar 

  134. Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res. 1996;11:218–25.

    CAS  PubMed  Google Scholar 

  135. Cussler EC, Lohman TG, Going SB, et al. Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc. 2003;35:10–7.

    PubMed  Google Scholar 

  136. Fiatarone Singh MA. Exercise comes of age: rationale and recommendations for a geriatric exercise prescription. J Gerontol A Biol Sci Med Sci. 2002;57:M262–82.

    Google Scholar 

  137. Morris JN, Fiatarone M, Kiely DK, et al. Nursing rehabilitation and exercise strategies in the nursing home. J Gerontol A Biol Sci Med Sci. 1999;54:M494–500.

    CAS  PubMed  Google Scholar 

  138. Hausdorff JM, Nelson ME, Kaliton D, et al. Etiology and modification of gait instability in older adults: a randomized controlled trial of exercise. J Appl Physiol. 2001;90:2117–29.

    CAS  PubMed  Google Scholar 

  139. Bassey EJ, Ramsdale SJ. Weight-bearing exercise and ground reaction forces: a 12-month randomized controlled trial of effects on bone mineral density in healthy postmenopausal women. Bone. 1995;16:469–76.

    CAS  PubMed  Google Scholar 

  140. Shaw JM, Snow CM. Weighted vest exercise improves indices of fall risk in older women. J Gerontol A Biol Sci Med Sci. 1998;53:M53–8.

    CAS  PubMed  Google Scholar 

  141. Dalen N, Lamke B. Bone mineral losses in alcoholics. Acta Orthop Scand. 1976;47:469–71.

    CAS  PubMed  Google Scholar 

  142. Braith RW, Mills RM, Welsch MA, Keller JW, Pollock ML. Resistance exercise training restores bone mineral density in heart transplant recipients. J Am Coll Cardiol. 1996;28:1471–7.

    CAS  PubMed  Google Scholar 

  143. Adinoff AD, Hollister JR. Steroid-induced fractures and bone loss in patients with asthma. N Engl J Med. 1983;309:265–8.

    CAS  PubMed  Google Scholar 

  144. Storer TW. Exercise in chronic pulmonary disease: resistance exercise prescription. Med Sci Sports Exerc. 2001;33:S680–92.

    CAS  PubMed  Google Scholar 

  145. Simpson K, Killian K, McCartney N, Stubbing DG, Jones NL. Randomised controlled trial of weightlifting exercise in patients with chronic airflow limitation. Thorax. 1992;47:70–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Casaburi R. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Med Sci Sports Exerc. 2001;33:S662–70.

    CAS  PubMed  Google Scholar 

  147. Nishimura Y, Nakata H, Matsubara M, Maeda H, Yokoyama H. Bone mineral loss in patients with chronic obstructive pulmonary disease. Nihon Kyobu Shikkan Gakkai Zasshi. 1993;31:1548–52.

    CAS  PubMed  Google Scholar 

  148. Cambach W, Wagenaar RC, Koelman TW, van Keimpema AR, Kemper HC. The long-term effects of pulmonary rehabilitation in patients with asthma and chronic obstructive pulmonary disease: a research synthesis. Arch Phys Med Rehabil. 1999;80:103–11.

    CAS  PubMed  Google Scholar 

  149. Maddalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int. 2000;66:399–404.

    CAS  PubMed  Google Scholar 

  150. Kohrt WM, Ehsani AA, Birge Jr SJ. HRT preserves increases in bone mineral density and reductions in body fat after a supervised exercise program. J Appl Physiol. 1998;84:1506–12.

    CAS  PubMed  Google Scholar 

  151. Sinaki M, Itoi E, Wahner HW, et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone. 2002;30:836–41.

    CAS  PubMed  Google Scholar 

  152. Centre for R, Dissemination. Lifestyle interventions to prevent osteoporotic fractures: a systematic review (structured abstract). Database of Abstracts of Reviews of Effects 2013:3.

    Google Scholar 

  153. Gomez-Cabello A, Ara I, Gonzalez-Aguero A, Casajus JA, Vicente-Rodriguez G. Effects of training on bone mass in older adults: a systematic review. Sports Med. 2012;42:301–25.

    CAS  PubMed  Google Scholar 

  154. Maatta M, Terho E, Jokinen H, et al. Lifestyle factors and site-specific risk of hip fracture in community dwelling older women—a 13-year prospective population-based cohort study. BMC Musculoskelet Disord. 2012;13.

    Google Scholar 

  155. Gleason L, Menzies I, Mendelson D, Kates S, Friedman S. Diagnosis and treatment of osteoporosis in high-risk patients prior to hip fracture. Geriatr Orthop Surg Rehabil. 2012;3:79–83.

    PubMed Central  PubMed  Google Scholar 

  156. Lloyd BD, Williamson DA, Singh NA, et al. Recurrent and injurious falls in the year following hip fracture: a prospective study of incidence and risk factors from the Sarcopenia and Hip Fracture study. J Gerontol A Biol Sci Med Sci. 2009;64:599–609.

    PubMed  Google Scholar 

  157. Singh NA, Quine S, Clemson M, et al. Effects of high-intensity progressive resistance training and targeted multidisciplinary treatment of frailty on mortality and nursing home admissions after hip fracture: a randomized controlled trial. J Am Med Dir Assoc. 2012;13:24–30.

    PubMed  Google Scholar 

  158. Portegijs E, Read S, Pakkala I, et al. Sense of coherence affects adherence and response to resistance training in older people with hip fracture history. J Aging Phys Act. 2013;22:138–45.

    PubMed  Google Scholar 

  159. Edgren J, Rantanen T, Heinonen A, et al. Effects of progressive resistance training on physical disability among older community-dwelling people with history of hip fracture. Aging Clin Exp Res. 2012;24:171–5.

    PubMed  Google Scholar 

  160. Sylliaas H, Brovold T, Wyller TB, Bergland A. Prolonged strength training in older patients after hip fracture: a randomised controlled trial. Age Ageing. 2012;41:206–12.

    PubMed  Google Scholar 

  161. Sylliaas H, Brovold T, Wyller TB, Bergland A. Progressive strength training in older patients after hip fracture: a randomised controlled trial. Age Ageing. 2011;40:221–7.

    PubMed  Google Scholar 

  162. Pakkala I, Read S, Sipila S, et al. Effects of intensive strength-power training on sense of coherence among 60-85-year-old people with hip fracture: a randomized controlled trial. Aging Clin Exp Res. 2012;24:295–9.

    PubMed  Google Scholar 

  163. Mikkelsen LR, Mikkelsen SS, Christensen FB. Early, intensified home-based exercise after total hip replacement—a pilot study. Physiother Res Int. 2012;17:214–26.

    PubMed  Google Scholar 

  164. Achiniotis G, Evaggelinou C, Noussios G, Natsis C, Koidou R. The effect of an individual muscle strengthening program and dietary assessment in the quality of life in women with osteoporotic hip fracture. e J Sci Technol. 2011;6:57–64.

    Google Scholar 

  165. Portegjis E, Edgren J, Salpakoski A, Kallinen M, Rantanen T, Alen M. Balance confidence was associated with mobility and balance performance in older people with fall-related hip fracture: a cross-sectional study. Arch Phys Med Rehabil. 2012;93:2340–6.

    Google Scholar 

  166. Radosavljevic N, Nikolic D, Lazovic M, et al. Estimation of functional recovery in patients after hip fracture by Berg Balance Scale regarding the sex, age and comorbidity of participants. Geriatr Gerontol Int. 2013;13:365–71.

    PubMed  Google Scholar 

  167. Halvarsson A, Franzen E, Faren E, Olsson E, Oddsson L, Stahle A. Long-term effects of new progressive group balance training for elderly people with increased risk of falling—a randomized controlled trial. Clin Rehabil. 2013;27:450–8.

    PubMed  Google Scholar 

  168. Sipila S, Salpakoski A, Edgren J, et al. Promoting mobility after hip fracture (ProMo): study protocol and selected baseline results of a year-long randomized controlled trial among community-dwelling older people. BMC Musculoskelet Disord. 2011;12:277.

    PubMed Central  PubMed  Google Scholar 

  169. Orwig DL, Hochberg M, Yu-Yahiro J, et al. Delivery and outcomes of a yearlong home exercise program after hip fracture: A randomized controlled trial. Arch Intern Med. 2011;171:323–31.

    PubMed Central  PubMed  Google Scholar 

  170. Marks R. Aerobic exercise for preventing osteoporosis in postmenopausal women: an update of its effect on bone mineral density. Curr Rheumatol Rev. 2012;8:141–59.

    Google Scholar 

  171. Narra N, Nikander R, Viik J, Hyttinen J, Sievanen H. Femoral neck cross-sectional geometry and exercise loading. Clin Physiol Funct Imaging. 2013;33:258–66.

    PubMed  Google Scholar 

  172. Auais MA, Eilayyan O, Mayo NE. Extended exercise rehabilitation after hip fracture improves patients’ physical function: a systematic review and meta-analysis. Phys Ther. 2012;92:1437–51.

    PubMed  Google Scholar 

  173. Tung Y-C, Cooke M, Moyle W. Sources older people draw on to nurture, strengthen and improve self-efficacy in managing home rehabilitation following orthopaedic surgery. J Clin Nurs. 2013;22:1217–25.

    PubMed  Google Scholar 

  174. Gorman E, Chudyk AM, Hoppmann CA, et al. Exploring older adults’ patterns and perceptions of exercise after hip fracture. Physiother Can. 2013;65:86–93.

    PubMed Central  PubMed  Google Scholar 

  175. Portegijs E, Rantakokko M, Edgren J, et al. Effects of a rehabilitation program on perceived environmental barriers in older patients recovering from hip fracture: a randomized controlled trial. BioMed Res Int. 2013;2013:769645.

    PubMed Central  PubMed  Google Scholar 

  176. Morghen S, Bellelli G, Manuele S, Guerini F, Frisoni GB, Trabucchi M. Moderate to severe depressive symptoms and rehabilitation outcome in older adults with hip fracture. Int J Geriatr Psychiatry. 2011;26:1136–43.

    PubMed  Google Scholar 

  177. Phillips A, Upton J, Duggl N, Carroll D, Lord J. Depression following hip fracture is associated with increased physical frailty in older adults: the role of the cortisol: dehydroepiandrosterone sulphate ratio. BMC Geriatr. 2013;13:60.

    PubMed Central  PubMed  Google Scholar 

  178. Shyu YI, Liang J, Tseng MY, et al. Comprehensive care improves health outcomes among elderly Taiwanese patients with hip fracture. J Gerontol A Biol Sci Med Sci. 2013;68:188–97.

    PubMed  Google Scholar 

  179. Yamada M, Takechi H, Mori S, Aoyama T, Arai H. Global brain atrophy is associated with physical performance and the risk of falls in older adults with cognitive impairment. Geriatr Gerontol Int. 2013;13:437–42.

    PubMed  Google Scholar 

  180. Koren-Hakim T, Weiss A, Hershkovitz A, et al. The relationship between nutritional status of hip fracture operated elderly patients and their functioning, comorbidity and outcome. Clin Nutr. 2012;31:917–21.

    PubMed  Google Scholar 

  181. Abellan van Kan G, Cesari M, Gillette-Guyonnet S, et al. Sarcopenia and cognitive impairment in elderly women: results from the EPIDOS cohort. Age Ageing. 2013;42:196–202.

    PubMed  Google Scholar 

  182. Tseng M-Y, Shyu Y-IL, Liang J. Functional recovery of older hip-fracture patients after interdisciplinary intervention follows three distinct trajectories. Gerontologist. 2012;52:833–42.

    PubMed  Google Scholar 

  183. Schaller F, Sidelnikov E, Theiler R, et al. Mild to moderate cognitive impairment is a major risk factor for mortality and nursing home admission in the first year after hip fracture. Bone. 2012;51:347–52.

    CAS  PubMed  Google Scholar 

  184. Nandi N, Maddula M, Sahota O. Improving hip fracture care: striving for excellence. Rev Clin Gerontol. 2013;23:223–33.

    Google Scholar 

  185. Stenvall M, Berggren M, Lundstrom M, Gustafson Y, Olofsson B. A multidisciplinary intervention program improved the outcome after hip fracture for people with dementia—subgroup analyses of a randomized controlled trial. Arch Gerontol Geriatr. 2012;54:e284–9.

    PubMed  Google Scholar 

  186. Langlois F, Vu TTM, Chasse K, Dupuis G, Kergoat M-J, Bherer L. Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol Ser B Psychol Sci Soc Sci. 2013;68:400–4.

    Google Scholar 

  187. Handoll HH, Sherrington C, Mak JC. Interventions for improving mobility after hip fracture surgery in adults. Cochrane Database Syst Rev 2011:CD001704.

    Google Scholar 

  188. Jeejeebhoy KN. Malnutrition, fatigue, frailty, vulnerability, sarcopenia and cachexia: overlap of clinical features. Curr Opin Clin Nutr Metabol Care. 2012;15:213–9.

    CAS  Google Scholar 

  189. Hida T, Ishiguro N, Shimokata H, et al. High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int. 2013;13:413–20.

    PubMed  Google Scholar 

  190. Braith RW, Welsch MA, Mills Jr RM, Keller JW, Pollock ML. Resistance exercise prevents glucocorticoid-induced myopathy in heart transplant recipients. Med Sci Sports Exerc. 1998;30:483–9.

    CAS  PubMed  Google Scholar 

  191. Westby MD, Wade JP, Rangno KK, Berkowitz J. A randomized controlled trial to evaluate the effectiveness of an exercise program in women with rheumatoid arthritis taking low dose prednisone. J Rheumatol. 2000;27:1674–80.

    CAS  PubMed  Google Scholar 

  192. Burr DB, Yoshikawa T, Teegarden D, et al. Exercise and oral contraceptive use suppress the normal age-related increase in bone mass and strength of the femoral neck in women 18-31 years of age. Bone. 2000;27:855–63.

    CAS  PubMed  Google Scholar 

  193. Weaver CM, Teegarden D, Lyle RM, et al. Impact of exercise on bone health and contraindication of oral contraceptive use in young women. Med Sci Sports Exerc. 2001;33:873–80.

    CAS  PubMed  Google Scholar 

  194. Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res. 1996;11:1539–44.

    CAS  PubMed  Google Scholar 

  195. Bergman C, Gray-Scott D, Chen JJ, Meacham S. What is next for the Dietary Reference Intakes for bone metabolism related nutrients beyond calcium: phosphorus, magnesium, vitamin D, and fluoride? Crit Rev Food Sci Nutr. 2009;49:136–44.

    CAS  PubMed  Google Scholar 

  196. Kohrt WM, Snead DB, Slatopolsky E, Birge Jr SJ. Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res. 1995;10:1303–11.

    CAS  PubMed  Google Scholar 

  197. Yeh JK, Aloia JF, Tierney JM, Sprintz S. Effect of treadmill exercise on vertebral and tibial bone mineral content and bone mineral density in the aged adult rat: determined by dual energy X-ray absorptiometry. Calcif Tissue Int. 1993;52:234–8.

    CAS  PubMed  Google Scholar 

  198. Notelovitz M, Martin D, Tesar R, et al. Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res. 1991;6:583–90.

    CAS  PubMed  Google Scholar 

  199. Vico L, Chappard D, Alexandre C, et al. Effects of a 120 day period of bed-rest on bone mass and bone cell activities in man: attempts at countermeasure. Bone Miner. 1987;2:383–94.

    CAS  PubMed  Google Scholar 

  200. Grigoriev AI, Morukov BV, Oganov VS, Rakhmanov AS, Buravkova LB. Effect of exercise and bisphosphonate on mineral balance and bone density during 360 day antiorthostatic hypokinesia. J Bone Miner Res. 1992;7 Suppl 2:S449–55.

    PubMed  Google Scholar 

  201. Chilibeck PD, Davison KS, Whiting SJ, Suzuki Y, Janzen CL, Peloso P. The effect of strength training combined with bisphosphonate (etidronate) therapy on bone mineral, lean tissue, and fat mass in postmenopausal women. Can J Physiol Pharmacol. 2002;80:941–50.

    CAS  PubMed  Google Scholar 

  202. Uusi-Rasi K, Kannus P, Cheng S, et al. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003;33:132–43.

    CAS  PubMed  Google Scholar 

  203. Uusi-Rasi K, Sievanen H, Heinonen A, Kannus P, Vuori I. Effect of discontinuation of alendronate treatment and exercise on bone mass and physical fitness: 15-month follow-up of a randomized, controlled trial. Bone. 2004;35:799–805.

    CAS  PubMed  Google Scholar 

  204. Greendale GA, Salem GJ, Young JT, et al. A randomized trial of weighted vest use in ambulatory older adults: strength, performance, and quality of life outcomes. J Am Geriatr Soc. 2000;48:305–11.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Fiatarone Singh M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, M.A.F. (2015). Exercise and Bone Health. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics