Skip to main content

Quantitative Clinical Nutrition Approaches to the Study of Calcium and Bone Metabolism

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Understanding the role of nutrients, food components, and diet in bone health is important as a means available to individuals to build and maintain peak bone mass within their genetic potential. There are several approaches an investigator can take to study the relationship between diet and bone, including epidemiology, randomized controlled trials, or metabolic balance and kinetic studies. In this chapter, we will review methodologies that allow quantitative nutrition effects on bone to be determined. They are resource intensive, and thus, not feasible to use in large population studies. The necessarily small study group cannot represent the entire population, which is a limitation of this approach. Metabolic balance studies can offer a highly controlled independent variable, that is, diet. When used in a crossover design, the effect of one dietary change on net calcium retention can be quantitated. Kinetic studies provide additional information over balance studies alone, and analysis of tracers offers greater precision. When balance studies are used in conjunction with isotopic tracers, parameters of calcium metabolism can be studied including absorption, endogenous secretion, excretion, bone formation rates, and bone resorption rates. As 99 % of the body’s calcium resides in the skeleton, to study calcium metabolism is to study bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaton GH, Milner BA, Corey P, et al. Source of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Am J Clin Nutr. 1979;32:2456–559.

    Google Scholar 

  2. Bauer W, Aub C. Studies of inorganic salt metabolism. I. The ward routine and methods. J Am Dietetic Assoc. 1927;3:106–15.

    CAS  Google Scholar 

  3. Reifenstein EC, Albright F, Wells SL. The accumulation, interpretation, and presentation of data pertaining to metabolic balances, notably those of calcium, phosphorus, and nitrogen. J Clin Endocrinol Metab. 1945;5:367–95.

    Article  PubMed  Google Scholar 

  4. Weaver CM, Martin BR, Plawecki KL, et al. Differences in calcium metabolism between adolescent and adult females. Am J Clin Nutr. 1995;61:577–81.

    CAS  PubMed  Google Scholar 

  5. DeSantiago S, Alonso L, Halkali A, Larrea F, Isoard F, Bourges H. Negative calcium balance during lactation in rural Mexican women. Am J Clin Nutr. 2002;76:845–51.

    CAS  PubMed  Google Scholar 

  6. Bryant RJ, Wastney ME, Martin BR, et al. Racial differences in bone turnover and calcium metabolism in adolescent females. J Clin Endocrinol Metab. 2003;88:1043–7.

    Article  CAS  PubMed  Google Scholar 

  7. Rambaut PC, Leach CS, Whedon GD. A study of metabolic balance in crewmembers of Skylab W. Acta Astronaut. 1979;6:1313–22.

    Article  CAS  PubMed  Google Scholar 

  8. Wastney ME, Martin BR, Peaock M, et al. Changes in calcium kinetics in adolescent girls induced by high calcium intake. J Clin Endocrinol Metab. 2000;85:4470–5.

    CAS  PubMed  Google Scholar 

  9. Spence LA, Lipscomb ER, Cadogan J, Martin B, Wastney ME, Peacock M, Weaver CM. The effect of soy protein and soy isoflavones on calcium metabolism and renal handling in postmenopausal women: a randomized cross over study. Am J Clin Nutr. 2005;81:916–22.

    CAS  PubMed  Google Scholar 

  10. Jackman LA, Millane SS, Martin BR, et al. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. Am J Clin Nutr. 1997;66:327–33.

    CAS  PubMed  Google Scholar 

  11. Palacios C, Wigertz K, Martin BR, Weaver CM. Sweat mineral loss from whole body, patch and arm bag in white and black girls. Nutr Res. 2003;23:401–11.

    Article  CAS  Google Scholar 

  12. Charles P, Jensen FT, Mosekilde L, Hanson HH. Calcium metabolism evaluated by47Ca kinetics estimation of dermal calcium loss. Clin Sci. 1983;65:415–22.

    CAS  PubMed  Google Scholar 

  13. Weaver CM, Martin BR, Peacock M. Calcium metabolism in adolescent girls. Challenges of modern medicine. In: Burckhardt P, Heaney RP, editors. Nutritional aspects of osteoporosis ’94, vol. 7. Rome: Ares-Serono Symposium Publications; 1995. p. 123–8.

    Google Scholar 

  14. Dawson-Hughes B, Harris S, Kramich C, DaMal G, Rasmussen HM. Calcium retention and hormonal levels in black and white women on high- and low-calcium diets. J Bone Miner Res. 1993;8:779–87.

    Article  CAS  PubMed  Google Scholar 

  15. Malm OJ. Calcium requirement and adaptation in adult men. Scand J Clin Lab Invest. 1958;10 suppl 36:1–280.

    CAS  PubMed  Google Scholar 

  16. Isaksson B, Lindholm B, Sjögren B. A critical evaluation of the calcium balance technic. II. Dermal calcium losses. Metabolism. 1967;16:303–13.

    Article  CAS  PubMed  Google Scholar 

  17. Wilkinson R. Polyethylene glycol 4000 as a continuously administered non-absorbable fecal marker for metabolic balance studies in human subjects. Gut. 1971;12:654–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Eastell R, Dewanjee MK, Riggs BL. Comparison of polyethylene glycol and chromium-51 chloride as nonabsorbable stool markers in calcium balance studies. Bone Miner. 1989;6:95–105.

    Article  CAS  PubMed  Google Scholar 

  19. Bingham SA, Cummings JH. The use of creatinine ouput as a check on the completeness of 24-hour urine collections. Hum Nutr Clin Nutr. 1985;39C:343–52.

    Google Scholar 

  20. Abrams SA, Al Y, Heaney RP. Relationship between balance and dual tracer isotopic measurements of calcium absorption and excretion. J Clin Endocrinol Metab. 1994;79:965–9.

    CAS  PubMed  Google Scholar 

  21. Heaney RP. Evaluation and interpretation of calcium-kinetic data in man. Clin Orthop Relat Res. 1963;31:153–83.

    Article  CAS  PubMed  Google Scholar 

  22. Roth P, Werner E. Interrelations of radiocalcium absorption tests and their clinical relevance. Miner Electrolyte Metab. 1985;11:351–7.

    CAS  PubMed  Google Scholar 

  23. Stürup S, Hansen M, Mølgaard C. Measurements of 44Ca:43Ca and 42Ca:43Ca isotopic ratios in urine using high resolution inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1997;12:919–23.

    Article  Google Scholar 

  24. Kastenmayer P. Thermal ionization mass spectrometry (TIMS). In: Mellon FA, Sandström B, editors. Stable isotopes in human nutrition. London: Academic; 1996. p. 81–6.

    Google Scholar 

  25. Smith DL. Determination of stable isotopes of calcium in biological fluids by fast atom bombardment mass spectrometry. Anal Chem. 1983;55:2391–3.

    Article  CAS  PubMed  Google Scholar 

  26. Jackson GS, Weaver C, Elmore D. Use of accelerator mass spectrometry for studies in nutrition. Nutr Res Rev. 2001;14:317–34.

    Article  CAS  PubMed  Google Scholar 

  27. DeGrazia JA, Ivanovich P, Fellows H, Rich C. A double isotope method for measurement of intestinal absorption of calcium in man. J Lab Clin Med. 1965;66:822–9.

    CAS  PubMed  Google Scholar 

  28. Smith DL, Atkin C, Westenfelder C. Stable isotopes of calcium as tracers: methodology. Clin Chim Acta. 1985;146:97.

    Article  CAS  PubMed  Google Scholar 

  29. Smith SM, Nyquist LE, Shih C-Y, et al. Calcium kinetics using microgram stable isotope doses and saliva sampling. J Mass Spectrom. 1996;31:1265–70.

    Article  CAS  PubMed  Google Scholar 

  30. Wastney ME, Patterson BH, Linares OA, Greif PC, Boston RC. Investigating biological systems using modeling: strategies and software. San Diego, CA: Academic; 1998.

    Google Scholar 

  31. Wastney ME, Ng J, Smith D, Martin BR, Peacock M, Weaver CM. Differences in calcium kinetics between adolescent girls and young women. Am J Physiol. 1996;271:R208–16.

    CAS  PubMed  Google Scholar 

  32. Wastney ME, Martin B, Bryant R, Weaver CM. Calcium utilization in young women: new insights from modeling. In: Novotny J, Green MH, Boston RC, editors. Mathematical modeling in nutrition and in health sciences. New York, NY: Kluwer/Plenum; 2003. p. 193–205.

    Chapter  Google Scholar 

  33. Jung A, Bartholdi P, Mermillod B, Reeve J, Neer R. Critical analysis of methods for analyzing human calcium kinetics. J Theor Biol. 1978;73:131–57.

    Article  CAS  PubMed  Google Scholar 

  34. Weiss GH, Goans RE, Gitterman M, Abrams SA, Vieira NE, Yergey AL. A non-Markovian model for calcium kinetics in the body. J Pharmacokinet Biopharm. 1994;22(5):367–79.

    Article  CAS  PubMed  Google Scholar 

  35. Eastell R, Vieira NE, Yergey AL, Riggs BL. One-day test using stable isotopes to measure true fractional calcium absorption. J Bone Miner Res. 1989;4:463–8.

    Article  CAS  PubMed  Google Scholar 

  36. Martin BR, Weaver CM, Heaney RP, Packard PT, Smith DL. Calcium absorption from three salts and CaSO4-fortified bread in premenopausal women. J Agric Food Chem. 2002;50(13):3874–6.

    Google Scholar 

  37. O’Brien KO, Abrams SA. Effects of development on techniques for calcium stable isotope studies in children. Biol Mass Spectrom. 1994;23:357–61.

    Article  PubMed  Google Scholar 

  38. van den Heuvel EG, Mays T, van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr. 1999;69:544–8.

    PubMed  Google Scholar 

  39. Heaney RP, Recker RR. Estimation of true calcium absorption. Ann Intern Med. 1985;103:516–21.

    Article  CAS  PubMed  Google Scholar 

  40. Heaney RP, Recker RR. Estimating true fractional calcium absorption. Ann Intern Med. 1988;108:905–6.

    Article  CAS  PubMed  Google Scholar 

  41. Beck AB, Bügel S, Stürup S, et al. A novel dual radio- and stable-isotope method for measuring calcium absorption in humans: comparison with the whole-body radioisotope retention method. Am J Clin Nutr. 2003;77:399–405.

    CAS  PubMed  Google Scholar 

  42. Lee W, McCabe GP, Martin BR, Weaver CM. Validation of a simple isotope method for estimating true calcium fraction absorption in adolescents. Osteoporos Int. 2011;22:159–66.

    Article  CAS  PubMed  Google Scholar 

  43. Lee WH, McCabe GP, Martin BR, Weaver CM. Simple isotopic method using oral stable or radioactive tracers for estimating fractional calcium absorption in adult women. Osteoporos Int. 2011;22:1829–34.

    Article  CAS  PubMed  Google Scholar 

  44. Whisner CM, Martin BR, Schoterman MH, Nakatsu CH, McCabe LD, McCabe GP, Wastney ME, van den Heuvel EG, Weaver CM. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr. 2013;14:1–12.

    Google Scholar 

  45. Weaver CM. Intrinsic mineral labeling of edible plants: methods and uses. CRC Crit Rev Food Sci Nutr. 1985;23:75–101.

    Article  CAS  Google Scholar 

  46. Weaver CM, Martin BR, Costa NMB, Saleeb FZ, Huth PJ. Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model. J Agric Food Chem. 2002;50:4974–5.

    Article  CAS  PubMed  Google Scholar 

  47. Weaver CM, Proulx WR, Heaney R. Choices for achieving adequate dietary calcium with a vegetarian diet. Am J Clin Nutr. 1999;70:543S–8.

    CAS  PubMed  Google Scholar 

  48. Heaney RP, Recker RR. Determinants of endogenous fecal calcium in healthy women. J Bone Miner Res. 1994;9:1621–7.

    Article  CAS  PubMed  Google Scholar 

  49. Abrams SA, Sidbury JB, Muenzer J, Esteban NV, Vieira NE, Yergey AL. Stable isotopic measurement of endogenous fecal calcium excretion in children. J Pediatr Gastroenterol Nutr. 1991;12:469–73.

    Article  CAS  PubMed  Google Scholar 

  50. Neer R, Berman M, Fisher L, Rosenberg LE. Multicompartmental analysis of calcium kinetics in normal adult males. J Clin Invest. 1967;46:1364–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Weaver CM, Peacock M, Martin BR, et al. Quantification of biochemical markers of bone turnover by kinetic markers of bone formation and resorption in young healthy females. J Bone Miner Res. 1997;12:1714–20.

    Article  CAS  PubMed  Google Scholar 

  52. Lauffenbarger T, Olah AJ, Dambacher A, Guricaga J, Leutner C, Haas HG. Bone remodeling and calcium kinetic and biochemical study in patients with osteoporosis and Paget’s disease. Metabolism. 1977;26:589–605.

    Article  Google Scholar 

  53. Charles P, Poser JW, Mosekilde L, Jensen FT. Estimation of bone turnover evaluated by 47Cakinetics. J Clin Invest. 1985;76:2254–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Horowitz M, Need AG, Philcox JC, Nordin BEC. Effect of calcium supplementation on urinary hydroxyproline in osteoporotic postmenopausal women. Am J Clin Nutr. 1984;39:857–9.

    CAS  PubMed  Google Scholar 

  55. Lee WH, Wastney ME, Jackson GS, Martin BR, Weaver CM. Interpretation of 41Ca data using compartmental modeling in post-menopausal women. Anal Bioanal Chem. 2011;399:1613–22.

    Article  CAS  PubMed  Google Scholar 

  56. Freeman SPHT, Beck B, Bierman J, et al. The study of skeletal Ca metabolism with 41Ca and45 Ca. Nucl Instr Meth Phys Res. 2000;172B:930–3.

    Article  Google Scholar 

  57. Weaver CM, Martin BR, Jackson GS, McCabe GP, Nolan JR, McCabe LD, Barnes S, Reinwald S, Boris ME, Peacock M. Antiresorptive effects of phytoestrogen supplements compared to estradiol or Risedronate in postmenopausal women using 41Ca methodology. J Clin Endocrinol Metab. 2009;94:3798–805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Public Health Service grants R01AR40553, R01 HD36609, and P50 AT00477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie M. Weaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weaver, C.M., Wastney, M., Spence, L.A. (2015). Quantitative Clinical Nutrition Approaches to the Study of Calcium and Bone Metabolism. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics