Skip to main content

Nutrition in Pregnancy and Lactation

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

  • 3008 Accesses

Abstract

Pregnancy and lactation are periods of significant change in calcium and bone metabolism for the mother. Physiological changes that occur insure that there is an adequate calcium supply for fetal growth, milk production, and maternal bone recovery. During pregnancy, low maternal calcium intake is associated with low neonatal BMC and maternal vitamin D deficiency influences fetal bone development and neonatal calcium homeostasis. Whether maternal vitamin D status during pregnancy influences infant growth trajectories or bone accrual later in childhood is not known. Due to potential adverse effects of high maternal vitamin D concentrations on the offspring, it is important that all current and future supplementation trials investigate the influence of not just low serum 25-OHD concentrations, but also high concentrations, on these outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widdowson EM, Southgate DAT, Hey E. Fetal growth and body composition. In: Landblad BS, editor. Perinatal nutrition. New York, NY: Academic; 1988.

    Google Scholar 

  2. Forbes GB. Letter: calcium accumulation by the human fetus. Pediatrics. 1976;57:976–7.

    CAS  PubMed  Google Scholar 

  3. Laskey MA, Prentice A, Hanratty LA, Jarjou LMA, Dibba B, Beavan SR, et al. Bone changes after 3 mo of lactation: influence of calcium intake, breast-milk output, and vitamin D-receptor genotype. Am J Clin Nutr. 1998;67:685–92.

    CAS  PubMed  Google Scholar 

  4. Kent GN, Price RI, Gutteridge DH, Rosman KJ, Smith M, Allen JR, et al. The efficiency of intestinal calcium absorption is increased in late pregnancy but not in established lactation. Calcif Tissue Int. 1991;48:293–5.

    CAS  PubMed  Google Scholar 

  5. Cross NA, Hillman LS, Allen SH, Krause GF, Vieira NE. Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr. 1995;61:514–23.

    CAS  PubMed  Google Scholar 

  6. Ritchie LD, Fung EB, Halloran BP, Turnlund JR, VanLoan MD, Cann CE, et al. A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am J Clin Nutr. 1998;67:693–701.

    CAS  PubMed  Google Scholar 

  7. Specker BL, Tsang RC, Ho ML, Miller D. Effect of vegetarian diet on serum 1,25-dihydroxyvitamin D concentrations during lactation. Obstet Gynecol. 1987;70:870–4.

    CAS  PubMed  Google Scholar 

  8. O’Brien KO, Donangelo CM, Ritchie LD, Gildengorin G, Abrams S, King JC. Serum 1,25-dihydroxyvitamin D and calcium intake affect rates of calcium deposition during pregnancy and the early postpartum period. Am J Clin Nutr. 2012;96:64–72.

    PubMed Central  PubMed  Google Scholar 

  9. Bezerra FF, Laboissiere FP, King JC, Donangelo CM. Pregnancy and lactation affect markers of calcium and bone metabolism differently in adolescent and adult women with low calcium intakes. J Nutr. 2002;132:2183–7.

    CAS  PubMed  Google Scholar 

  10. Seki K, Makimura N, Mitsui C, Hirata J, Nagata I. Calcium-regulating hormones and osteocalcin levels during pregnancy: A longitudinal study. Am J Obstet Gynecol. 1991;164:1248–52.

    CAS  PubMed  Google Scholar 

  11. Heaney RP, Skillman TG. Calcium metabolism in normal pregnancy. J Clin Endocrinol. 1971;33:661–70.

    CAS  Google Scholar 

  12. Kovacs CS. The role of vitamin D in pregnancy and lactation: Insights from animal models and clinical studies. Annu Rev Nutr. 2012;32:97–123.

    CAS  PubMed  Google Scholar 

  13. Naylor KE, Iqbal P, Fledelius C, Fraser RB, Eastell R. The effect of pregnancy on bone density and bone turnover. J Bone Miner Res. 2000;15:129–37.

    CAS  PubMed  Google Scholar 

  14. O’Brien KO, Donangelo CM, Zapata CL, Abrams SA, Spencer EM, King JC. Bone calcium turnover during pregnancy and lactation in women with low calcium diets is associated with calcium intake and circulating insulin-like growth factor 1 concentrations. Am J Clin Nutr. 2006;83(2):317–23. Epub 2006/02/14.

    PubMed  Google Scholar 

  15. Kent GN, Price RI, Gutteridge DH, Allen JR, Rosman KJ, Smith M, et al. Effect of pregnancy and lactation on maternal bone mass and calcium metabolism. Osteoporos Int. 1993;1:S44–7.

    Google Scholar 

  16. Martin TJ, Gillespie MT. Receptor activator of nuclear factor kappa B ligand (RANKL): another link between breast and bone. Trends Endocrinol Metab. 2001;12:2–4.

    CAS  PubMed  Google Scholar 

  17. Uemura H, Yasui T, Kiyokawa M, Kuwahara A, Ikawa H, Matsuzaki T, et al. Serum osteoprotegerin/osteoclastogenesis-inhibitory factor during pregnancy and lactation and the relationship with calcium-regulating hormones and bone turnover markers. J Endocrinol. 2002;174:353–9.

    CAS  PubMed  Google Scholar 

  18. Naylor KE, Rogers A, Fraser RB, Hall V, Eastell R, Blumsohn A. Serum osteoprotegrin as a determinant of bone metabolism in a longitudinal study of human pregnancy and lactation. J Clin Endocrinol Metab. 2003;88:5361–5.

    CAS  PubMed  Google Scholar 

  19. Ensom MHH, Liu PY, Stephenson MD. Effect of pregnancy on bone mineral density in healthy women. Obstet Gynecol Surv. 2002;57:99–111.

    PubMed  Google Scholar 

  20. Tothill P, Avenell A. Errors in dual-energy x-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change. Br J Radiol. 1994;67:71–5.

    CAS  PubMed  Google Scholar 

  21. Sowers MF, Scholl T, Harris L, Jannausch M. Bone loss in adolescent and adult pregnant women. Obstet Gynecol. 2000;96:189–93.

    CAS  PubMed  Google Scholar 

  22. Specker BL, Vieira NE, O’Brien KO, Ho ML, Heubi JE, Abrams SA, et al. Calcium kinetics in lactating women with low and high calcium intakes. Am J Clin Nutr. 1994;59:593–9.

    CAS  PubMed  Google Scholar 

  23. Kalkwarf HJ, Specker BL, Heubi JE, Vieira NE, Yergey AL. Intestinal calcium absorption of women during lactation and after weaning. Am J Clin Nutr. 1996;63:526–31.

    CAS  PubMed  Google Scholar 

  24. Moser-Veillon PG, Mangels AR, Vieira NE, Yergy AL, Patterson KY, Hill AD, et al. Calcium fractional absorption and metabolism assessed using stable isotopes differ between postpartum and never pregnant women. J Nutr. 2001;131:2295–9.

    CAS  PubMed  Google Scholar 

  25. Kent GN, Price RI, Gutteridge D, Smith M, Allen J, Bhagat C, et al. Human lactation: forearm trabecular bone loss, increased bone turnover, and renal conservation of calcium and inorganic phosphate with recovery of bone mass following weaning. J Bone Miner Res. 1990;5:361–9.

    CAS  PubMed  Google Scholar 

  26. Kalkwarf HJ, Specker BL, Ho M. Effects of calcium supplementation on calcium homeostasis and bone turnover in lactating women. J Clin Endocrinol Metab. 1999;84:464–70.

    CAS  PubMed  Google Scholar 

  27. Kumar R, Cohen WR, Silva P, Epstein FH. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Investig. 1979;63:342–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hillman L, Sateesha S, Haussler M, Wiest W, Slatopolsky E, Haddad J. Control of mineral homeostasis durig lactation: Interrelationships of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, 1,25-dihydroxyvitamin D, parathyroid hormone, calcitonin, prolactin, and estradiol. Am J Obstet Gynecol. 1981;139:471–6.

    CAS  PubMed  Google Scholar 

  29. Affinito P, Tommaselli GA, DiCarlo C, Guida F, Nappi C. Changes in bone mineral density and calcium metabolism in breast-feeding women: A one year follow-up study. J Clin Endocrinol Metab. 1996;81:2314–8.

    CAS  PubMed  Google Scholar 

  30. Krebs NF, Reidinger CJ, Robertson AD, Brenner M. Bone mineral density changes during lactation: maternal, dietary, and biochemical correlates. Am J Clin Nutr. 1997;65:1738–46.

    CAS  PubMed  Google Scholar 

  31. Prentice A, Jarjou LMA, Stirling DM, Buffenstein R, Fairweather-Tait S. Biochemical markers of calcium and bone metabolism during 18 months of lactation in Gambian women accustomed to a low calcium intake and in those consuming a calcium supplement. J Clin Endocrinol Metab. 1998;83:1059–66.

    CAS  PubMed  Google Scholar 

  32. Sowers MF, Eyre D, Hollis BW, Randolph JF, Shapiro B, Jannausch ML, et al. Biochemical markers of bone turnover in lactating and nonlactating postpartum women. J Clin Endocrinol Metab. 1995;80:2210–6.

    CAS  PubMed  Google Scholar 

  33. Sowers MF, Hollis BW, Shapiro B, et al. Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA. 1996;276:549–54.

    CAS  PubMed  Google Scholar 

  34. Dobnig H, Kainer F, Stepan V, Winter R, Lipp R, Schaffer M, et al. Elevated parathyroid hormone-related peptide levels after human gestation: Relationship to changes in bone and mineral metabolism. J Clin Endocrinol Metab. 1995;80:3699–707.

    CAS  PubMed  Google Scholar 

  35. Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD. Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab. 2001;86:3162–5.

    CAS  PubMed  Google Scholar 

  36. Hayslip CC, Dlein TA, Wray L, Duncan WE. The effects of lactation on bone mineral content in healthy postpartum women. Obstet Gynecol. 1989;73:588–92.

    CAS  PubMed  Google Scholar 

  37. Sowers MF, Randolph J, Shapiro B, Jannausch M. A prospective study of bone density and pregnancy after an extended period of lactation with bone loss. Obstet Gynecol. 1995;85:285–9.

    CAS  PubMed  Google Scholar 

  38. Sowers MF, Corton G, Shapiro B, Jannausch ML, Crutchfield M, Smith ML, et al. Changes in bone density with lactation. JAMA. 1993;269:3130–5.

    CAS  PubMed  Google Scholar 

  39. Kalkwarf HJ, Specker BL. Bone mineral loss during lactation and recovery during weaning. Obstet Gynecol. 1995;86:26–32.

    CAS  PubMed  Google Scholar 

  40. Lopez JM, Gonzalez G, Reyes V, Campino C, Diaz S. Bone turnover and density in healthy women during breastfeeding and after weaning. Osteoporos Int. 1996;6:153–9.

    CAS  PubMed  Google Scholar 

  41. Kolthoff N, Eiken P, Kristensen B, Nielsen SP. Bone mineral changes during pregnancy and lactation: a longitudinal cohort study. Clin Sci (Lond). 1998;94:405–12.

    CAS  Google Scholar 

  42. Hopkinson JM, Butte NF, Ellis K, Smith EO. Lactation delays postpartum bone mineral accretion and temporarily alters its regional distribution in women. J Nutr. 2000;130:777–83.

    CAS  PubMed  Google Scholar 

  43. Polatti F, Capuzzo E, Viazzo F, Collconi R, Klersy C. Bone mineral changes during and after lactation. Obstet Gynecol. 1999;94:52–6.

    CAS  PubMed  Google Scholar 

  44. Prentice A, Jarjou LM, Cole TJ, Stirling DM, Dibba B, Fairweather-Tait S. Calcium requirements of lactating Gambian mothers: effects of a calcium supplement on breast-milk calcium concentration, maternal bone mineral content, and urinary calcium excretion. Am J Clin Nutr. 1995;62:58–67.

    CAS  PubMed  Google Scholar 

  45. Kalkwarf HJ, Specker BL, Bianchi DC, Ranz J, Ho M. The effect of calcium supplementation on bone density during lactation and after weaning. N Engl J Med. 1997;337:523–8.

    CAS  PubMed  Google Scholar 

  46. Cross NA, Hillman LS, Allen SH, Krasue GF. Changes in BMD and markers of bone remodeling during lactation and postweaning in women consuming high amounts of calcium. J Bone Miner Res. 1995;10:1312–20.

    CAS  PubMed  Google Scholar 

  47. Chan GM, McMurry M, Westover K, Englebert-Fenton K, Thoman R. Effects of increased dietary calcium intake upon the calcium and bone mineral status of lactating adolescent and adult women. Am J Clin Nutr. 1987;46:319–23.

    CAS  PubMed  Google Scholar 

  48. Greer FR, Garn SM. Loss of bone mineral content in lactating adolescents. J Pediatr. 1982;101:718–9.

    CAS  PubMed  Google Scholar 

  49. Cunningham AS, Mazess RB. Bone mineral loss in lactating adolescents. J Pediatr. 1983;101:338–9.

    Google Scholar 

  50. Specker BL, Tsang RC, Ho ML. Changes in calcium homeostasis over the first year postpartum: effect of lactation and weaning. Obstet Gynecol. 1991;78:56–62.

    CAS  PubMed  Google Scholar 

  51. Walker ARP, Richardson B, Walker F. The influence of numerous pregnancies and lactations on bone dimensions in South African Bantu and caucasian mothers. Clin Sci. 1972;42:189–96.

    CAS  PubMed  Google Scholar 

  52. Henderson PH, Sower M, Kutzko KE, Jannausch ML. Bone mineral density in grand multiparous women with extended lactation. Am J Obstet Gynecol. 2000;182:1371–7.

    PubMed  Google Scholar 

  53. Jarjou LMA, Laskey MA, Sawo Y, Goldberg GR, Cole TJ, Prentice A. Effect of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake. Am J Clin Nutr. 2010;92:450–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Khastgir G, Studd JWW, King H, Abdalla H, Jones J, Carter G, et al. Changes in bone density and biochemical markers of bone turnover in pregnancy-associated osteoporosis. Br J Obstet Gynaecol. 1996;103:716–8.

    CAS  PubMed  Google Scholar 

  55. Gruber HE, Gutteridge DH, Baylink DJ. Osteoporosis associated with pregnancy and lactation: bone biopsy and skeletal features in three patients. Metab Bone Dis Relat Res. 1984;5:159–65.

    CAS  PubMed  Google Scholar 

  56. Aloia JF, Vaswani AN, Yeh JK, Ross P, Ellis K, Cohn SH. Determinants of bone mass in postmenopausal women. Arch Intern Med. 1983;143:1700–4.

    CAS  PubMed  Google Scholar 

  57. Feldblum PJ, Zhang J, Rich LE, Forney JA, Talmage RV. Lactation history and bone mineral density among perimenopausal women. Epidemiology. 1992;3:527–31.

    CAS  PubMed  Google Scholar 

  58. Hreshchyshyn MM, Hopkins A, Zylstra S, Anbar M. Associations of parity, breast-feeding, and birth control pills with lumbar spine and femoral neck bone densities. Am J Obstet Gynecol. 1988;159:318–22.

    CAS  PubMed  Google Scholar 

  59. Melton III LJ, Bryant SC, Wahner HW, O’Fallon WM, Malkasian GD, Judd HL, et al. Influence of breastfeeding and other reproductive factors on bone mass later in life. Osteoporos Int. 1993;3:76–83.

    PubMed  Google Scholar 

  60. Schnatz PF, Barker KG, Marakovits KA, O’Sullivan DM. Effects of age at first pregnancy and breast-feeding on the development of postmenopausal osteoporosis. Menopause. 2010;17:1161–6.

    PubMed  Google Scholar 

  61. Lissner L, Bengtsson C, Hansson T. Bone mineral content in relation to lactation history in pre- and postmeopausal women. Calcif Tissue Int. 1991;48:319–25.

    CAS  PubMed  Google Scholar 

  62. Wardlaw GM, Pke AM. The effect of lactation on peak adult shaft and ultra-distal forearm bone mass in women. Am J Clin Nutr. 1986;44:283–6.

    CAS  PubMed  Google Scholar 

  63. Koetting CA, Wardlaw GM. Wrist, spine, and hip bone density in women with variable histories of lactation. Am J Clin Nutr. 1988;48:1479–81.

    CAS  PubMed  Google Scholar 

  64. Wasnich R, Yano K, Vogel J. Postmenopausal bone loss at multiple skeletal sites: Relationship to estrogen use. J Chronic Dis. 1983;36:781–90.

    CAS  PubMed  Google Scholar 

  65. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. Lancet. 1993;341:72–5.

    Google Scholar 

  66. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. 1994.

    Google Scholar 

  67. Specker B, Binkley T. High parity is associated with increased bone strength and size. Osteoporos Int. 2005;16:1969–74.

    PubMed  Google Scholar 

  68. Turan V. Grand-grand multiparity (more than 10 deliveries) does not convey a risk for osteoporosis. Acta Obstet Gynecol Scand. 2011;90:1440–2.

    PubMed  Google Scholar 

  69. Wiklund PK, Xu L, Wang Q, Mikkola T, Lyytikaeinen A, Voelgi E, et al. Lactation is associated with greater maternal bone size and bone strength later in life. Osteoporos Int. 2012;23:1939–45.

    CAS  PubMed  Google Scholar 

  70. Alderman BW, Weiss NS, Daling JR, Ure CL, Ballard JH. Reproductive history and postmenopausal risk of hip and forearm fracture. Am J Epidemiol. 1986;124:262–7.

    CAS  PubMed  Google Scholar 

  71. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, et al. Risk factors for hip fracture in white women. N Engl J Med. 1995;332:767–73.

    CAS  PubMed  Google Scholar 

  72. Hoffman S, Grisso JA, Kelsey JL, Gammon DM, O’Brien LA. Parity, lactation and hip fracture. Osteoporos Int. 1993;3:171–6.

    CAS  PubMed  Google Scholar 

  73. Cumming RG, Klineberg RJ. Breastfeeding and other reproductive factors and the risk of hip fractures in elderly women. Int J Epidemiol. 1993;22:684–91.

    CAS  PubMed  Google Scholar 

  74. Kreiger N, Kelsey JL, Holford TR, O’Connor T. An epidemiologic study of hip fracture in postmenopausal women. Am J Epidemiol. 1982;116:141–8.

    CAS  PubMed  Google Scholar 

  75. Michaelsson K, Baron JA, Farahmand BY, Ljunghall S. Influence of parity and lactation on hip fracture risk. Am J Epidemiol. 2001;153:1166–72.

    CAS  PubMed  Google Scholar 

  76. Buppasiri P, Lumbiganon P, Thinkhamrop J, Ngamjarus C, Laopaiboon M. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane database of systematic. Hoboken, NJ: Wiley; 2011.

    Google Scholar 

  77. Young BE, McNanley TJ, Cooper EM, McIntyre AW, Witter F, Harris ZL, et al. Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am J Clin Nutr. 2012;95:1103–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Raman L, Rajalakshmi K, Krishnamachari KAVR, Sastry JG. Effect of calcium supplementation to undernourished mothers during pregnancy on the bone density of the neonates. Am J Clin Nutr. 1978;31:466–9.

    CAS  PubMed  Google Scholar 

  79. Koo W, Walters J, Esterlitz J, Levine R, Bush A, Sibai B. Maternal calcium supplementation and fetal bone mineralization. Obstet Gynecol. 1999;94:577–82.

    CAS  PubMed  Google Scholar 

  80. Markestad T, Aksnes L, Ulstein M, Aarskog D. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am J Clin Nutr. 1984;40:1057–63.

    CAS  PubMed  Google Scholar 

  81. Gertner JH, Glassman MC, Coustan DR, Goodman DB. Fetomaternal vitamin D relationships at term. J Pediatr. 1980;97:637–40.

    CAS  PubMed  Google Scholar 

  82. Daaboul J, Sanderson S, Kristensen K, Kitson H. Vitamin D deficiency in pregnant and breast-feeding women and their infants. J Perinatol. 1997;17:10–4.

    CAS  PubMed  Google Scholar 

  83. Okonofua F, Menon RK, Houlder S, Thomas M, Robinson D, O’Brien S, et al. Parathyroid hormone and neonatal calcium homeostasis: evidence for secondary hyperparathyroidism in the Asian neonate. Metabolism. 1986;35:803–6.

    CAS  PubMed  Google Scholar 

  84. Purvis RJ, MacKay GS, Cockburn F, Barrie WJM, Wilkinson EM, Belton NR, et al. Enamel hypoplasia of the teeth associated with neonatal tetany: a manifestation of maternal vitamin D deficiency. Lancet. 1973;2:811–4.

    CAS  PubMed  Google Scholar 

  85. Hollis B, Johnson D, Hulsey TC, Ebeling M, Wagner C. Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011;26:2341–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Delvin EE, Salle BL, Glorieux FH, Adeleine P, David LS. Vitamin D supplementation during pregnancy: effect on neonatal calcium homeostasis. J Pediatr. 1986;109:328–34.

    CAS  PubMed  Google Scholar 

  87. Brooke DG, Brown IRF, Bone CDM, Carter ND, Cleeve HJW, Maxwell JD, et al. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br J Med. 1980;280:751–4.

    CAS  Google Scholar 

  88. Leffelaar ER, Vrijkotte TG, van Eijsden M. Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: results of the multi-ethnic Amsterdam born children and their development cohort. Br J Nutr. 2010;104:108–17.

    CAS  PubMed  Google Scholar 

  89. Bodnar LM, Catov JM, Zmuda JM, Cooper ME, Parrott MS, Roberts JM, et al. Maternal serum 25-hydroxyvitamin D concentrations are associated with small-for-gestational age births in white women. J Nutr. 2010;140(5):999–1006.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Morley R, Carlin JB, Pasco JA, Wark JD, Ponsonby AL. Maternal 25-hydroxyvitamin D concentration and offspring birth size: effect modification by infant VDR genotype. Eur J Clin Nutr. 2008;63:802–4.

    PubMed  Google Scholar 

  91. Gale CR, Robinson SM, Harvey NC, Javaid MK, Jiang B, Martyn C, et al. Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr. 2008;62:68–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006;367:36–43.

    CAS  PubMed  Google Scholar 

  93. Sayers AA, Tobias JH. Estimated maternal ultraviolet B exposure levels in pregnancy influence skeletal development of the child. J Clin Endocrinol Metab. 2009;94:765–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. De-Regil LM, Palacios C, Ansary A, Kulier R, Pena-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2012;2.

    Google Scholar 

  95. Zhou H. Rickets in China. In: Glorieux FH, editor. Rickets. New York, NY: Raven; 1991. p. 253.

    Google Scholar 

  96. Russell JGB, Hill LF. True fetal rickets. Br J Radiol. 1974;47:732–4.

    CAS  PubMed  Google Scholar 

  97. Moncrief M, Fadahunsi TO. Congenital rickets due to maternal vitamin D deficiency. Arch Dis Child. 1974;49:810–1.

    Google Scholar 

  98. Reif S, Katzir Y, Eisenberg Z, Weisman Y. Serum 25-hydroxyvitamin D levels in congenital craniotabes. Acta Paediatr Scand. 1988;77:167–8.

    CAS  PubMed  Google Scholar 

  99. Congdon P, Horsman A, Kirby PA, Dibble J, Bashir T. Mineral content of the forearms of babies born to Asian and white mothers. BMJ. 1983;286:1234–5.

    Google Scholar 

  100. Specker B, Ho M, Oestreich A, Yin T, Shui Q, Chen X, et al. Prospective study of vitamin D supplementation and rickets in China. J Pediatr. 1992;120:733–9.

    CAS  PubMed  Google Scholar 

  101. Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, et al. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res. 2010;25:14–9.

    CAS  PubMed  Google Scholar 

  102. Ioannou C, Javaid MK, Mahon P, Yaqub MK, Harvey NC, Godfrey KM, et al. The effect of maternal vitamin D concentration on fetal bone. J Clin Endocrinol Metab. 2012;97:E2070–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Makitie O, et al. Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metabol. 2010;95(4):1749–57.

    CAS  Google Scholar 

  104. Weiler H, Fitzpatrick-Wong S, Veitch R, Kovacs H, Schellenberg J, McCloy U, et al. Vitamin D deficiency and whole-body and femur bone mass relative to weight in healthy newborns. Can Med Assoc J. 2005;172:757–61.

    Google Scholar 

  105. Hollis BW, Roos BA, Draper HH, Lambert PW. Vitamin D and its metabolites in human and bovine milk. J Nutr. 1981;111:1240–8.

    CAS  PubMed  Google Scholar 

  106. Specker BL, Tsang RC, Hollis BW. Effect of race and diet on human milk vitamin D and 25-hydroxyvitamin D. Am J Dis Child. 1985;139:1134–7.

    CAS  PubMed  Google Scholar 

  107. Specker B, Valanis B, Hertzberg V, Edwards N, Tsang R. Sunshine exposure and serum 25-hydroxyvitamin D concentrations in exclusively breast-fed infants. J Pediatr. 1985;107:372.

    CAS  PubMed  Google Scholar 

  108. Specker B, Tsang R. Cyclical serum 25-hydroxyvitamin D concentrations paralleling sunshine exposure in exclusively breast-fed infants. J Pediatr. 1987;110:744–7.

    CAS  PubMed  Google Scholar 

  109. Basile LA, Taylor SN, Wagner C, Horst RL, Hollis BW. The effect of high-dose vitamin D supplementation on serum vitamin D levels and milk calcium concentration in lactating women and their infants. Breastfeed Med. 2006;1:27–35.

    PubMed  Google Scholar 

  110. Ala-Houhala M. 25-Hydroxyvitamin D levels during breast-feeding with or without maternal or infantile supplementation of vitamin D. J Pediatr Gastroenterol Nutr. 1985;4:220–6.

    CAS  PubMed  Google Scholar 

  111. Brooke OG, Butters F, Wood C. Intrauterine vitamin D nutrition and postnatal growth in Asian infants. BMJ. 1981;283:1024.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wey HE, Binkley T, Beare T, Wey CL, Specker B. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab. 2011;96:106–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C, Ness AR. Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int. 2005;16:1731–41.

    CAS  PubMed  Google Scholar 

  114. Institute of Medicine (IOM). Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  115. Jia X, Aucott LS, McNeill G. Nutritional status and subsequent all-cause mortality in men and women aged 75 years or over living in the community. Br J Nutr. 2007;98:593–9.

    CAS  PubMed  Google Scholar 

  116. Sempos CT, Durazo-Arvizu RA, Dawson-Hughes B, Yetley EA, Looker AC, Schleicher RL, et al. Is there a reverse J-shaped association between 25-hydroxyvitamin D and all-cause mortality? Results from the U.S. nationally representative NHANES. J Clin Endocrinol Metab. 2013;98:3001–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Javaid MK, Shore SR, Taylor P, Gale C, Boucher BJ, Noonan K, et al. Maternal vitamin D status during late pregnancy and accrual of childhood bone mienral (abstract #1047). J Bone Miner Res. 2003;18:S13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonny L. Specker Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Specker, B.L. (2015). Nutrition in Pregnancy and Lactation. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics