Skip to main content

Proteases in Lens and Cataract

  • Chapter
  • First Online:
Studies on the Cornea and Lens

Abstract

The eye lens is a transparent tissue with a unique cellular architecture and pattern of development. Several proteases play pivotal roles during lens morphogenesis and thereafter to maintain the lens transparency. However, with aging, the activity of a number of lens proteases changes, resulting in the degradation of lens proteins and the accumulation of protein fragments. Recent studies suggest that some of the protein fragments that accumulate in the lens with age might be involved in aggregation of lens proteins and development of opacity, also known as cataract. In vitro and in vivo experiments show that lens opacity from α-crystallin aggregation bears the hallmarks of increased proteolysis and decreased α-crystallin chaperone activity. A number of lens proteases are now implicated in the degradation of cytoskeletal proteins, the truncation of lens crystallins, and the generation of peptides that have a role in aggregation and precipitation of lens proteins culminating in cataract. While a perfect animal model to understand the mechanisms of cataractogenesis has yet to be developed, the experimental models now available, such as transgenic mice that overexpress acylpeptide hydrolase, allow study of the lens proteases and the potential therapeutic targets.

This review chapter is dedicated to the memory of Dr. Beryl J. Ortwerth

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APH:

Acylpeptide hydrolase

LC-MS:

Liquid chromatography mass spectrometry

LMW:

Low molecular weight

WIS:

Water-insoluble

WS:

Water-soluble

References

  1. Lovicu FJ, Robinson ML, editors. Development of the ocular lens. New York: Cambridge University Press; 2004.

    Google Scholar 

  2. Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci. 2011;366:1219–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Jaffe NS, Horwitz J. Lens and cataract. In: Podos SM, Yanoff M, editors. Text book of ophthalmology, vol. 3. New York: Gower Medical Publishing; 1991.

    Google Scholar 

  4. Bassnett S. On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res. 2009;88:133–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Duncan G, Wormstone IM, Davies PD. The aging human lens: structure, growth, and physiological behaviour. Br J Ophthalmol. 1997;81:818–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kuszak JR, Zoltoski RK, Sivertson C. Fibre cell organization in crystalline lenses. Exp Eye Res. 2004;78:673–87.

    Article  CAS  PubMed  Google Scholar 

  7. Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A. Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol. 2004;86:407–85.

    Article  CAS  PubMed  Google Scholar 

  8. Benedek GB. Cataract as a protein condensation disease: the Proctor Lecture. Invest Ophthalmol Vis Sci. 1997;38:1911–21.

    CAS  PubMed  Google Scholar 

  9. Sharma KK, Santhoshkumar P. Lens aging: effects of crystallins. Biochim Biophys Acta. 2009;1790:1095–108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Roy D, Spector A. Absence of low molecular weight alpha crystallin in nuclear region of old human lenses. Proc Natl Acad Sci U S A. 1976;73:3484–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Miesbauer LR, Zhou X, Yang Z, Yang Z, Sun Y, Smith DL, Smith JB. Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem. 1994;269:12494–502.

    CAS  PubMed  Google Scholar 

  12. Horwitz J. Alpha-crystallin. Exp Eye Res. 2003;76:145–53.

    Article  CAS  PubMed  Google Scholar 

  13. Horwitz J. α-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992;89:10449–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wride MA, Geatrell J, Guggenheim JA. Proteases in eye development and disease. Birth Defects Res C Embryo Today. 2006;78:90–105.

    Article  CAS  PubMed  Google Scholar 

  15. Zandy AJ, Bassnett S. Proteolytic mechanisms underlying mitochondrial degradation in the ocular lens. Invest Ophthalmol Vis Sci. 2007;48:293–302.

    Article  PubMed  Google Scholar 

  16. Imai F, Yoshizawa A, Fujimori-Tonou N, Kawakami K, Masai I. The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish. Development. 2010;137:3257–68.

    Article  CAS  PubMed  Google Scholar 

  17. Tse SS, Ortwerth BJ. Activation and release of a trypsin-like proteinase from bovine lens alpha-crystallin. Exp Eye Res. 1982;34:659–74.

    Article  CAS  PubMed  Google Scholar 

  18. Chaerkady R, Sharma KK. Characterization of a bradykinin-hydrolyzing protease from the bovine lens. Invest Ophthalmol Vis Sci. 2004;45:1214–23.

    Article  PubMed  Google Scholar 

  19. Gupta R, Chen J, Srivastava OP. A serine-type protease activity of human lens betaA3-crystallin is responsible for its autodegradation. Mol Vis. 2010;16:2242–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Srivastava OP, Srivastava K. Characterization of a sodium deoxycholate-activatable proteinase activity associated with betaA3/A1-crystallin of human lenses. Biochim Biophys Acta. 1999;1434:331–46.

    Article  CAS  PubMed  Google Scholar 

  21. Srivastava OP. Characterization of a highly purified membrane proteinase from bovine lens. Exp Eye Res. 1988;46:269–83.

    Article  CAS  PubMed  Google Scholar 

  22. David LL, Shearer TR. Purification of calpain II from rat lens and determination of endogenous substrates. Exp Eye Res. 1986;42:227–38.

    Article  CAS  PubMed  Google Scholar 

  23. Ueda Y, McCormack AL, Shearer TR, David LL. Purification and characterization of lens specific calpain (Lp82) from bovine lens. Exp Eye Res. 2001;73:625–37.

    Article  CAS  PubMed  Google Scholar 

  24. Swanson AA, Davis RM, Meinhardt NC. Proteases in human lenses and their possible significance. Curr Eye Res. 1985;4:43–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hariharapura R, Santhoshkumar P, Krishna Sharma K. Profiling of lens protease involved in generation of αA-66-80 crystallin peptide using an internally quenched protease substrate. Exp Eye Res. 2013;109:51–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sharma KK, Ortwerth BJ. Bovine lens acylpeptide hydrolase. Purification and characterization of a tetrameric enzyme resistant to urea denaturation and proteolytic inactivation. Eur J Biochem. 1993;216:631–7.

    Article  CAS  PubMed  Google Scholar 

  27. Dawes LJ, Elliott RM, Reddan JR, Wormstone YM, Wormstone IM. Oligonucleotide microarray analysis of human lens epithelial cells: TGFbeta regulated gene expression. Mol Vis. 2007;13:1181–97.

    CAS  PubMed  Google Scholar 

  28. Sharma KK, Ortwerth BJ. Isolation and characterization of a new aminopeptidase from bovine lens. J Biol Chem. 1986;261:4295–301.

    CAS  PubMed  Google Scholar 

  29. Sharma KK, Ortwerth BJ. Aminopeptidase III activity in normal and cataractous lenses. Curr Eye Res. 1986;5:373–80.

    Article  CAS  PubMed  Google Scholar 

  30. David LL, Varnum MD, Lampi KJ, Shearer TR. Calpain II in human lens. Invest Ophthalmol Vis Sci. 1989;30:269–75.

    CAS  PubMed  Google Scholar 

  31. De Maria A, Shi Y, Kumar NM, Bassnett S. Calpain expression and activity during lens fiber cell differentiation. J Biol Chem. 2009;284:13542–50.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Fukiage C, Nakajima E, Ma H, Azuma M, Shearer TR. Characterization and regulation of lens-specific calpain Lp82. J Biol Chem. 2002;277:20678–85.

    Article  CAS  PubMed  Google Scholar 

  33. Morton JD, Lee HY, McDermott JD, Robertson LJ, Bickerstaffe R, Jones MA, Coxon JM, Abell AD. A macrocyclic calpain inhibitor slows the development of inherited cortical cataracts in a sheep model. Invest Ophthalmol Vis Sci. 2013;54:389–95.

    Article  CAS  PubMed  Google Scholar 

  34. Robertson LJ, Morton JD, Yamaguchi M, Bickerstaffe R, Shearer TR, Azuma M. Calpain may contribute to hereditary cataract formation in sheep. Invest Ophthalmol Vis Sci. 2005;46:4634–40.

    Article  PubMed  Google Scholar 

  35. Morozov V, Wawrousek EF. Caspase-dependent secondary lens fiber cell disintegration in alphaA-/alphaB-crystallin double-knockout mice. Development. 2006;133:813–21.

    Article  CAS  PubMed  Google Scholar 

  36. Eisenhauer DA, Berger JJ, Peltier CZ, Taylor A. Protease activities in cultured beef lens epithelial cells peak and then decline upon progressive passage. Exp Eye Res. 1988;46:579–90.

    Article  CAS  PubMed  Google Scholar 

  37. Sulochana KN, Ramakrishnan S, Arunagiri K. Purification and characterization of a new enzyme dipeptidase from human lens. Exp Eye Res. 1996;62:221–9.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor A. Aminopeptidases: structure and function. FASEB J. 1993;7:290–8.

    CAS  PubMed  Google Scholar 

  39. Sachdev NH, Di Girolamo N, Nolan TM, McCluskey PJ, Wakefield D, Coroneo MT. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the human lens: implications for cortical cataract formation. Invest Ophthalmol Vis Sci. 2004;45:4075–82.

    Article  PubMed  Google Scholar 

  40. Descamps FJ, Martens E, Proost P, Starckx S, Van den Steen PE, Van Damme J, Opdenakker G. Gelatinase B/matrix metalloproteinase-9 provokes cataract by cleaving lens betaB1 crystallin. FASEB J. 2005;19:29–35.

    Article  CAS  PubMed  Google Scholar 

  41. Sharma KK, Ortwerth BJ. Purification and characterization of prolyl oligopeptidase from bovine lens. Exp Eye Res. 1994;59:107–15.

    Article  CAS  PubMed  Google Scholar 

  42. Pereira P, Shang F, Hobbs M, Girao H, Taylor A. Lens fibers have a fully functional ubiquitin-proteasome pathway. Exp Eye Res. 2003;76:623–31.

    Article  CAS  PubMed  Google Scholar 

  43. Ray K, Harris H. Purification of neutral lens endopeptidase: close similarity to a neutral proteinase in pituitary. Proc Natl Acad Sci U S A. 1985;82:7545–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Trayhurn P, van Heyningen R. Neutral proteinase activity in the human lens. Exp Eye Res. 1976;22:251–7.

    Article  CAS  PubMed  Google Scholar 

  45. Wagner BJ, Margolis JW, Singh I. Bovine lens multicatalytic proteinase complex. Enzyme Protein. 1993;47:202–9.

    CAS  PubMed  Google Scholar 

  46. Li G, Percontino L, Sun Q, Qazi AS, Frederikse PH. Beta-amyloid secretases and beta-amloid degrading enzyme expression in lens. Mol Vis. 2003;9:179–83.

    CAS  PubMed  Google Scholar 

  47. Srivastava OP, Ortwerth BJ. Isolation and characterization of a 25K serine proteinase from bovine lens cortex. Exp Eye Res. 1983;37:597–612.

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida H, Murachi T, Tsukahara I. Limited proteolysis of bovine lens alpha-crystallin by calpain, a Ca2+-dependent cysteine proteinase, isolated from the same tissue. Biochim Biophys Acta. 1984;798:252–9.

    Article  CAS  PubMed  Google Scholar 

  49. David LL, Azuma M, Shearer TR. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. Invest Ophthalmol Vis Sci. 1994;35:785–93.

    CAS  PubMed  Google Scholar 

  50. Sharma KK, Kester K, Elser N. Identification of new lens protease(s) using peptide substrates having in vivo cleavage sites. Biochem Biophys Res Commun. 1996;218:365–70.

    Article  CAS  PubMed  Google Scholar 

  51. Grey AC, Schey KL. Distribution of bovine and rabbit lens alpha-crystallin products by MALDI imaging mass spectrometry. Mol Vis. 2008;14:171–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Grey AC, Schey KL. Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry. Invest Ophthalmol Vis Sci. 2009;50:4319–29.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Han J, Schey KL. MALDI tissue imaging of ocular lens alpha-crystallin. Invest Ophthalmol Vis Sci. 2006;47:2990–6.

    Article  PubMed  Google Scholar 

  54. Schey KL, Wang ZJLW, Qi Y. Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim Biophys Acta. 2014;1840:1513–23.

    Article  CAS  PubMed  Google Scholar 

  55. Stella DR, Floyd KA, Grey AC, Renfrow MB, Schey KL, Barnes S. Tissue localization and solubilities of alphaA-crystallin and its numerous C-terminal truncation products in pre- and postcataractous ICR/f rat lenses. Invest Ophthalmol Vis Sci. 2010;51:5153–61.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Santhoshkumar P, Udupa P, Murugesan R, Sharma KK. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J Biol Chem. 2008;283:8477–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Van Kleef SM, Willems-Thijssen W, Hoenders HJ. Intracellular degradation and deamidation of alpha-crystallin subunits. Eur J Biochem. 1976;66:477–83.

    Article  PubMed  Google Scholar 

  58. Hanson SR, Hasan A, Smith DL, Smith JB. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res. 2000;71:195–207.

    Article  CAS  PubMed  Google Scholar 

  59. Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Mol Vis. 2004;10:476–89.

    CAS  PubMed  Google Scholar 

  60. Harrington V, Srivastava OP, Kirk M. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Mol Vis. 2007;13:1680–94.

    CAS  PubMed  Google Scholar 

  61. Takemoto L. Increased cleavage of the c-terminal serine from alpha-A crystallin present in the high molecular weight aggregate fraction from human and bovine lenses. Curr Eye Res. 1999;19:450–5.

    Article  CAS  PubMed  Google Scholar 

  62. Kamei A, Iwase H, Masuda K. Cleavage of amino acid residue(s) from the N-terminal region of alpha A- and alpha B-crystallins in human crystalline lens during aging. Biochem Biophys Res Commun. 1997;231:373–8.

    Article  CAS  PubMed  Google Scholar 

  63. Robertson LJ, David LL, Riviere MA, Wilmarth PA, Muir MS, Morton JD. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract. Invest Ophthalmol Vis Sci. 2008;49:1016–22.

    Article  PubMed  Google Scholar 

  64. Su SP, Lyons B, Friedrich M, McArthur JD, Song X, Xavier D, Truscott RJ, Aquilina JA. Molecular signatures of long-lived proteins: autolytic cleavage adjacent to serine residues. Aging Cell. 2012;11:1125–7.

    Article  CAS  PubMed  Google Scholar 

  65. Su SP, McArthur JD, Aquilina JA. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Exp Eye Res. 2010;91:97–103.

    Article  CAS  PubMed  Google Scholar 

  66. Su SP, McArthur JD, Truscott RJW, Aquilina JA. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. Biochim Biophys Acta. 2011;1814:647–56.

    Article  CAS  PubMed  Google Scholar 

  67. Thampi P, Hassan A, Smith JB, Abraham EC. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses. Invest Ophthalmol Vis Sci. 2002;43:3265–72.

    PubMed  Google Scholar 

  68. Voorter CE, de Haard-Hoekman WA, van den Oetelaar PJ, Bloemendal H, de Jong WW. Spontaneous peptide bond cleavage in aging alpha-crystallin through a succinimide intermediate. J Biol Chem. 1988;263:19020–3.

    CAS  PubMed  Google Scholar 

  69. Shang F, Gong X, Palmer HJ, Nowell Jr TR, Taylor A. Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Exp Eye Res. 1997;64:21–30.

    Article  CAS  PubMed  Google Scholar 

  70. Viteri G, Carrard G, Birlouez-Aragon I, Silva E, Friguet B. Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys. 2004;427:197–203.

    Article  CAS  PubMed  Google Scholar 

  71. Fukiage C, Azuma M, Nakamura Y, Tamada Y, Shearer TR. Calpain-induced light scattering by crystallins from three rodent species. Exp Eye Res. 1997;65:757–70.

    Article  CAS  PubMed  Google Scholar 

  72. Srivastava OP, Srivastava K. Human lens membrane proteinase: purification and age-related distributional changes in the water-soluble and insoluble protein fractions. Exp Eye Res. 1989;48:161–75.

    Article  CAS  PubMed  Google Scholar 

  73. Takemoto L, Emmons T, Horwitz J. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation. Biochem J. 1993;294(Pt 2):435–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Andley UP, Mathur S, Griest TA, Petrash JM. Cloning, expression, and chaperone-like activity of human alphaA-crystallin. J Biol Chem. 1996;271:31973–80.

    Article  CAS  PubMed  Google Scholar 

  75. Kallur LS, Aziz A, Abraham EC. C-Terminal truncation affects subunit exchange of human αA-crystallin with αB-crystallin. Mol Cell Biochem. 2008;308:85–91.

    Article  CAS  PubMed  Google Scholar 

  76. Chaves JM, Srivastava K, Gupta R, Srivastava OP. Structural and functional roles of deamidation and/or truncation of N- or C-termini in human alpha A-crystallin. Biochemistry. 2008;47:10069–83.

    Article  CAS  PubMed  Google Scholar 

  77. Wu M, Zhang X, Bian Q, Taylor A, Liang JJ, Ding L, Horwitz J, Shang F. Oligomerization with wt alphaA- and alphaB-crystallins reduces proteasome-mediated degradation of C-terminally truncated alphaA-crystallin. Invest Ophthalmol Vis Sci. 2012;53:2541–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Sharma KK, Kester K. Peptide hydrolysis in lens: role of leucine aminopeptidase, aminopeptidase III, prolyloligopeptidase and acylpeptidehydrolase. Curr Eye Res. 1996;15:363–9.

    Article  CAS  PubMed  Google Scholar 

  79. Srivastava OP. Age-related increase in concentration and aggregation of degraded polypeptides in human lenses. Exp Eye Res. 1988;47:525–43.

    Article  CAS  PubMed  Google Scholar 

  80. Santhoshkumar P, Raju M, Sharma KK. αA-crystallin peptide 66SDRDKFVIFLDVKHF80 accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation. PLoS One. 2011;6:e19291.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Chongcharoen K, Sharma KK. Characterization of trypsin-modified bovine lens acylpeptide hydrolase. Biochem Biophys Res Commun. 1998;247:136–41.

    Article  CAS  PubMed  Google Scholar 

  82. Senthilkumar R, Reddy PN, Sharma KK. Studies on trypsin-modified bovine and human lens acylpeptide hydrolase. Exp Eye Res. 2001;72:301–10.

    Article  CAS  PubMed  Google Scholar 

  83. Kannan R, Santhoshkumar P, Mooney BP, Sharma KK. The alphaA66-80 peptide interacts with soluble alpha-crystallin and induces its aggregation and precipitation: a contribution to age-related cataract formation. Biochemistry. 2013;52:3638–50.

    Article  CAS  PubMed  Google Scholar 

  84. David LL, Shearer TR. Role of proteolysis in lenses: a review. Lens Eye Toxic Res. 1989;6:725–47.

    CAS  PubMed  Google Scholar 

  85. Stefani M. Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol. 2012;99:226–45.

    Article  CAS  PubMed  Google Scholar 

  86. Villar-Pique A, de Groot NS, Sabate R, Acebron SP, Celaya G, Fernandez-Busquets X, Muga A, Ventura S. The effect of amyloidogenic peptides on bacterial aging correlates with their intrinsic aggregation propensity. J Mol Biol. 2012;421:270–81.

    Article  CAS  PubMed  Google Scholar 

  87. Senthilkumar R, Chaerkady R, Sharma KK. Identification and properties of anti-chaperone-like peptides derived from oxidized bovine lens betaL-crystallins. J Biol Chem. 2002;277:39136–43.

    Article  CAS  PubMed  Google Scholar 

  88. Rao G, Santhoshkumar P, Sharma KK. Anti-chaperone βA3/A1102-117 peptide interacting sites in human αB-crystallin. Mol Vis. 2008;14:666–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Bhattacharyya J, Padmanabha Udupa EG, Wang J, Sharma KK. Mini-alphaB-crystallin: a functional element of alphaB-crystallin with chaperone-like activity. Biochemistry. 2006;45:3069–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Udupa PE, Sharma KK. Effect of oxidized betaB3-crystallin peptide (152-166) on thermal aggregation of bovine lens gamma-crystallins: identification of peptide interacting sites. Exp Eye Res. 2005;80:185–96.

    Article  CAS  PubMed  Google Scholar 

  91. Santhoshkumar P, Xie L, Raju M, Reneker L, Sharma KK. Lens crystallin modifications and cataract in transgenic mice overexpressing acylpeptide hydrolase. J Biol Chem. 2014;289:9039–52.

    Article  CAS  PubMed  Google Scholar 

  92. Swanson AA, Davis RM, Meinhardt NC, Kuck KD, Kuck Jr JF. Proteases in the Emory mouse cataract. Invest Ophthalmol Vis Sci. 1985;26:1035–7.

    CAS  PubMed  Google Scholar 

  93. Mitton KP, Kamiya T, Tumminia SJ, Russell P. Cysteine protease activated by expression of HIV-1 protease in transgenic mice. MIP26 (aquaporin-0) cleavage and cataract formation in vivo and ex vivo. J Biol Chem. 1996;271:31803–6.

    Article  CAS  PubMed  Google Scholar 

  94. Bantseev V, Oriowo OM, Giblin FJ, Leverenz VR, Trevithick JR, Sivak JG. Effect of hyperbaric oxygen on guinea pig lens optical quality and on the refractive state of the eye. Exp Eye Res. 2004;78:925–31.

    Article  CAS  PubMed  Google Scholar 

  95. Freel CD, Gilliland KO, Mekeel HE, Giblin FJ, Costello MJ. Ultrastructural characterization and Fourier analysis of fiber cell cytoplasm in the hyperbaric oxygen treated guinea pig lens opacification model. Exp Eye Res. 2003;76:405–15.

    Article  CAS  PubMed  Google Scholar 

  96. Padgaonkar VA, Lin LR, Leverenz VR, Rinke A, Reddy VN, Giblin FJ. Hyperbaric oxygen in vivo accelerates the loss of cytoskeletal proteins and MIP26 in guinea pig lens nucleus. Exp Eye Res. 1999;68:493–504.

    Article  CAS  PubMed  Google Scholar 

  97. Simpanya MF, Ansari RR, Suh KI, Leverenz VR, Giblin FJ. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Invest Ophthalmol Vis Sci. 2005;46:4641–51.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Shang F, Wilmarth PA, Chang ML, Liu K, David LL, Caceres MA, Wawrousek E, Taylor A. Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin. J Proteome Res. 2014;13:1177–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Brian Mooney, Ph.D. from the University of Missouri Proteomic Core for the help and discussions in the mass spectrometric analysis of the peptides and Sharon Morey for help in the preparation of the manuscript. Work in author’s laboratory is supported in part by National Institutes of Health grants EY023219 and EY019878.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krishna Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Santhoshkumar, P., Kannan, R., Sharma, K.K. (2015). Proteases in Lens and Cataract. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_13

Download citation

Publish with us

Policies and ethics