Skip to main content

Glutamine Uptake and Immunomodulation: An Overview

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1729 Accesses

Abstract

The cells of the vertebrate immune system provide protection from infection by activating a variety of defense mechanisms. During activation, cells may grow in size, proliferate, and produce effector molecules, all of which represent energetically demanding processes. Failure to meet the energetic and biosynthetic demands may lead to immune dysfunction and disease. A common feature of immune cell activation is increased uptake and utilization of the amino acid glutamine. Glutamine is a key metabolic intermediate, allowing it to serve multiple roles during immune activation. In lymphocytes, increased glutamine uptake may provide biosynthetic precursors, via entry into the citric acid cycle, and may also serve as an exchange substrate for uptake of other amino acids. In macrophages, high glutamine import rates are required for efficient phagocytosis of opsonized particles. Glutamine can also serve as a biosynthetic precursor for arginine, and is able to support nitric oxide synthesis when arginine levels are low. In neutrophils, glutamine is required for production of reactive oxygen and nitrogen species, but also for maintaining pools of reduced glutathione, helping maintain neutrophil viability. Overall, glutamine represents a key amino acid in supporting the activation of immune cells, and represents a potential therapeutic target for both suboptimal and hyperactive immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Pillay J, den Braber I, Vrisekoop N, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116(4):625–7.

    Article  CAS  PubMed  Google Scholar 

  3. Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol. 2004;172(8):4661–5.

    Article  CAS  PubMed  Google Scholar 

  4. Ardawi MS, Newsholme EA. Glutamine metabolism in lymphocytes of the rat. Biochem J. 1983;212(3):835–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Ardawi MS. Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism. 1988;37(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  6. Brand K, Williams JF, Weidemann MJ. Glucose and glutamine metabolism in rat thymocytes. Biochem J. 1984;221(2):471–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Curi TC, De Melo MP, De Azevedo RB, Zorn TM, Curi R. Glutamine utilization by rat neutrophils: presence of phosphate-dependent glutaminase. Am J Physiol. 1997;273(4 Pt 1):C1124–1129.

    CAS  PubMed  Google Scholar 

  8. Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J. 1986;239(1):121–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Horig H, Spagnoli GC, Filgueira L, et al. Exogenous glutamine requirement is confined to late events of T cell activation. J Cell Biochem. 1993;53(4):343–51.

    Article  CAS  PubMed  Google Scholar 

  10. Carr EL, Kelman A, Wu GS, et al. Glutamine uptake and metabolism Are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185:1037–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wallace C, Keast D. Glutamine and macrophage function. Metabolism. 1992;41(9):1016–20.

    Article  CAS  PubMed  Google Scholar 

  12. Murphy C, Newsholme P. Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production. Clin Sci. 1998;95(4):397–407.

    Article  CAS  PubMed  Google Scholar 

  13. Murphy C, Newsholme P. Macrophage-mediated lysis of a beta-cell line, tumour necrosis factor-alpha release from bacillus Calmette-Guerin (BCG)-activated murine macrophages and interleukin-8 release from human monocytes are dependent on extracellular glutamine concentration and glutamine metabolism. Clin Sci. 1999;96(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  14. Ogle CK, Ogle JD, Mao JX, et al. Effect of glutamine on phagocytosis and bacterial killing by normal and pediatric burn patient neutrophils. JPEN J Parenter Eneral Nutr. 1994;18(2):128–33.

    Article  CAS  Google Scholar 

  15. Pithon-Curi TC, Levada AC, Lopes LR, Doi SQ, Curi R. Glutamine plays a role in superoxide production and the expression of p47phox, p22phox and gp91phox in rat neutrophils. Clin Sci. 2002;103(4):403. -408.

    CAS  PubMed  Google Scholar 

  16. Pithon-Curi TC, Schumacher RI, Freitas JJ, et al. Glutamine delays spontaneous apoptosis in neutrophils. Am J Physiol Cell Physiol. 2003;284(6):C1355–1361.

    Article  CAS  PubMed  Google Scholar 

  17. Newsholme P, Curi R, Pithon Curi TC, Murphy CJ, Garcia C, Pires de Melo M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J Nutr Biochem. 1999;10(6):316–24.

    Article  CAS  PubMed  Google Scholar 

  18. Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 2004;447(5):469–79.

    Article  CAS  PubMed  Google Scholar 

  19. Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447(5):784–95.

    Article  CAS  PubMed  Google Scholar 

  20. Morris Jr SM. Arginine: beyond protein. Am J Clin Nutr. 2006;83(2):508S–12S.

    CAS  PubMed  Google Scholar 

  21. Ardawi MS, Newsholme EA. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat. Biochem J. 1982;208(3):743–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 2004;447:532–42.

    Article  CAS  PubMed  Google Scholar 

  23. Yang X, Yang C, Farberman A, et al. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth. J Anim Sci. 2008;86(14 Suppl):E36–50.

    CAS  PubMed  Google Scholar 

  24. Fox HL, Pham PT, Kimball SR, Jefferson LS, Lynch CJ. Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am J Physiol. 1998;275(5 Pt 1):C1232–1238.

    CAS  PubMed  Google Scholar 

  25. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273(23):14484–94.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Campbell LE, Miller CM, Proud CG. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J. 1998;334(Pt 1):261–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Ban H, Shigemitsu K, Yamatsuji T, et al. Arginine and Leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int J Mol Med. 2004;13(4):537–43.

    CAS  PubMed  Google Scholar 

  28. Iiboshi Y, Papst PJ, Hunger SP, Terada N. L-Asparaginase inhibits the rapamycin-targeted signaling pathway. Biochem Biophys Res Commun. 1999;260(2):534–9.

    Article  CAS  PubMed  Google Scholar 

  29. Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gottesdiener KM, Karpinski BA, Lindsten T, et al. Isolation and structural characterization of the human 4 F2 heavy-chain gene, an inducible gene involved in T-lymphocyte activation. Mol Cell Biol. 1988;8(9):3809–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Nii T, Segawa H, Taketani Y, et al. Molecular events involved in up-regulating human Na + -independent neutral amino acid transporter LAT1 during T-cell activation. Biochem J. 2001;358(Pt 3):693–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–303. doi:10.1038/ni.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Araki K, Turner AP, Shaffer VO, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460(7251):108–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32(1):67–78.

    Article  PubMed  Google Scholar 

  35. Li X, Garcia K, Sun Z, Xiao Z. Temporal regulation of rapamycin on memory CTL programming by IL-12. PLoS One. 2011;6(9):e25177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Weichhart T, Costantino G, Poglitsch M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity. 2008;29(4):565–77.

    Article  CAS  PubMed  Google Scholar 

  37. Lucas M, Zhang X, Prasanna V, Mosser DM. ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol. 2005;175(1):469–77.

    Article  CAS  PubMed  Google Scholar 

  38. Spittler A, Winkler S, Gotzinger P, et al. Influence of glutamine on the phenotype and function of human monocytes. Blood. 1995;86(4):1564–9.

    CAS  PubMed  Google Scholar 

  39. Kirk SJ, Barbul A. Role of arginine in trauma, sepsis, and immunity. JPEN J Parenter Eneral Nutr. 1990;14(5 Suppl):226S–9S.

    Article  CAS  Google Scholar 

  40. Newsholme P, Costa Rosa LF, Newsholme EA, Curi R. The importance of fuel metabolism to macrophage function. Cell Biochem Funct. 1996;14(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  41. DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lora J, Alonso FJ, Segura JA, Lobo C, Marquez J, Mates JM. Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem. 2004;271(21):4298–306.

    Article  CAS  PubMed  Google Scholar 

  43. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A. 2010;107(16):7455–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A. 2010;107(16):7461–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Frauwirth Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frauwirth, K. (2015). Glutamine Uptake and Immunomodulation: An Overview. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics