Skip to main content

Insulin Secretion and the Glutamine-Glutamate-Alpha-Ketoglutarate Axis

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

Protein-sensitive hypoglycemia in children with congenital hyperinsulinism (HI) highlights the important role of amino acids in regulation of insulin secretion. The studies of insulin secretion in three HI mouse models suggested that glutamine (Q)-glutamate (E)-alpha-ketoglutarate (αKG) axis played a key role in amino acid-stimulated insulin secretion. The mechanism of dysregulated insulin secretion in HI with a glutamate dehydrogenase (GDH) gain of function mutation is due to increased amino acid oxidation via this key axis. Loss of function mutation of Short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) also cause HI, the study of SCHAD knockout mice indicated that SCHAD inhibits GDH via protein-protein interaction; HI due to SCHAD deficiency shares a similar mechanism with GDH gain of function. In contrast, loss of function mutations of ATP-dependent potassium channels are sensitive to glutamine but not to leucine-stimulated insulin secretion. 13C tracing studies in islets suggested that generation of glutamine via the reverse flux of Q-E-αKG axis during glucose oxidation is important to maintain insulin secretion stimulated by glucose. The key enzymes in the Q-E-αKG axis, including glutaminase, GDH and glutamine synthetase, serve as intracellular energy sensors to determine the sensitivity of amino acid stimulation of insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Leon DD, Stanley CA. Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab. 2007;3(1):57–68.

    Article  PubMed  Google Scholar 

  2. Zelent D, Najafi H, Odili S, et al. Glucokinase and glucose homeostasis: proven concepts and new ideas. Biochem Soc Trans. 2005;33(Pt 1):306–10.

    CAS  PubMed  Google Scholar 

  3. Hsu BY, Kelly A, Thornton PS, Greenberg CR, Dilling LA, Stanley CA. Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr. 2001;138(3):383–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kelly A, Ng D, Ferry Jr RJ, et al. Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab. 2001;86(8):3724–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sener A, Malaisse WJ. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature. 1980;288(5787):187–9.

    Article  CAS  PubMed  Google Scholar 

  6. Li C, Najafi H, Daikhin Y, et al. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem. 2003;278(5):2853–8.

    Article  CAS  PubMed  Google Scholar 

  7. Li C, Buettger C, Kwagh J, et al. A signaling role of glutamine in insulin secretion. J Biol Chem. 2004;279(14):13393–401.

    Article  CAS  PubMed  Google Scholar 

  8. Fourtner SH, Stanley CA, Kelly A. Protein-sensitive hypoglycemia without leucine sensitivity in hyperinsulinism caused by K(ATP) channel mutations. J Pediatr. 2006;149(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  9. Gao ZY, Li G, Najafi H, Wolf BA, Matschinsky FM. Glucose regulation of glutaminolysis and its role in insulin secretion. Diabetes. 1999;48(8):1535–42.

    Article  CAS  PubMed  Google Scholar 

  10. Michalik M, Nelson J, Erecinska M. Glutamate production in islets of Langerhans: properties of phosphate-activated glutaminase. Metabolism. 1992;41(12):1319–26.

    Article  CAS  PubMed  Google Scholar 

  11. Li C, Matter A, Kelly A, et al. Effects of a GTP-insensitive mutation of glutamate dehydrogenase on insulin secretion in transgenic mice. J Biol Chem. 2006;281(22):15064–72.

    Article  CAS  PubMed  Google Scholar 

  12. Zaleski J, Wilson DF, Erecinska M. beta-2-Aminobicyclo-(2.2.1)-heptane-2-carboxylic acid. A new activator of glutaminase in intact rat liver mitochondria. J Biol Chem. 1986;261(30):14091–4.

    CAS  PubMed  Google Scholar 

  13. Freinkel N, el Younsi C, Bonnar J, Dawson RM. The “phosphate flush”: a new index of secretory stimulation in pancreatic islets. Trans Assoc Am Physicians. 1974;87:306–14.

    CAS  PubMed  Google Scholar 

  14. Freinkel N, Younsi CE, Bonnar J, Dawson RM. Rapid transient efflux of phosphate ions from pancreatic islets as an early action of insulin secretagogues. J Clin Invest. 1974;54(5):1179–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Doliba NM, Vatamaniuk MZ, Buettger CW, et al. Differential effects of glucose and glyburide on energetics and Na+ levels of betaHC9 cells: nuclear magnetic resonance spectroscopy and respirometry studies. Diabetes. 2003;52(2):394–402.

    Article  CAS  PubMed  Google Scholar 

  16. Li M, Li C, Allen A, Stanley CA, Smith TJ. The structure and allosteric regulation of glutamate dehydrogenase. Neurochem Int. 2011;59(4):445–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Stanley CA, Lieu YK, Hsu BY, et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998;338(19):1352–7.

    Article  CAS  PubMed  Google Scholar 

  18. Fang J, Hsu BY, MacMullen CM, Poncz M, Smith TJ, Stanley CA. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem J. 2002;363(Pt 1):81–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49(11):1751–60.

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Li M, Chen P, et al. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem. 2011;286(39):34164–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hussain K, Clayton PT, Krywawych S, et al. Hyperinsulinism of infancy associated with a novel splice site mutation in the SCHAD gene. J Pediatr. 2005;146(5):706–8.

    Article  CAS  PubMed  Google Scholar 

  22. Molven A, Matre GE, Duran M, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. 2004;53(1):221–7.

    Article  CAS  PubMed  Google Scholar 

  23. Li C, Allen A, Kwagh J, et al. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem. 2006;281(15):10214–21.

    Article  CAS  PubMed  Google Scholar 

  24. Li C, Chen P, Palladino A, et al. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem. 2010;285(41):31806–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kapoor RR, James C, Flanagan SE, Ellard S, Eaton S, Hussain K. 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab. 2009;94(7):2221–5.

    Article  CAS  PubMed  Google Scholar 

  26. Eaton S, Chatziandreou I, Krywawych S, Pen S, Clayton PT, Hussain K. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with hyperinsulinism: a novel glucose-fatty acid cycle? Biochem Soc Trans. 2003;31(Pt 6):1137–9.

    Article  CAS  PubMed  Google Scholar 

  27. Martens GA, Vervoort A, Van de Casteele M, et al. Specificity in beta cell expression of L-3-hydroxyacyl-CoA dehydrogenase, short chain, and potential role in down-regulating insulin release. J Biol Chem. 2007;282(29):21134–44.

    Article  CAS  PubMed  Google Scholar 

  28. Narayan SB, Master SR, Sireci AN, et al. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways. PLoS One. 2012;7(4):e35048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bahi-Buisson N, Roze E, Dionisi C, et al. Neurological aspects of hyperinsulinism-hyperammonaemia syndrome. Dev Med Child Neurol. 2008;50(12):945–9.

    Article  PubMed  Google Scholar 

  30. Li M, Smith CJ, Walker MT, Smith TJ. Novel inhibitors complexed with glutamate dehydrogenase: allosteric regulation by control of protein dynamics. J Biol Chem. 2009;284(34):22988–3000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Grimberg A, Ferry Jr RJ, Kelly A, et al. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes. 2001;50(2):322–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Remedi MS, Koster JC. K(ATP) channelopathies in the pancreas. Pflugers Arch. 2010;460(2):307–20.

    Article  CAS  PubMed  Google Scholar 

  33. Huopio H, Reimann F, Ashfield R, et al. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest. 2000;106(7):897–906.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Leibowitz G, Glaser B, Higazi AA, Salameh M, Cerasi E, Landau H. Hyperinsulinemic hypoglycemia of infancy (nesidioblastosis) in clinical remission: high incidence of diabetes mellitus and persistent beta-cell dysfunction at long-term follow-up. J Clin Endocrinol Metab. 1995;80(2):386–92.

    CAS  PubMed  Google Scholar 

  35. Li C, Nissim I, Chen P, et al. Elimination of KATP channels in mouse islets results in elevated [U-13C]glucose metabolism, glutaminolysis, and pyruvate cycling but a decreased gamma-aminobutyric acid shunt. J Biol Chem. 2008;283(25):17238–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. De Leon DD, Li C, Delson MI, Matschinsky FM, Stanley CA, Stoffers DA. Exendin-(9-39) corrects fasting hypoglycemia in SUR-1-/- mice by lowering cAMP in pancreatic beta-cells and inhibiting insulin secretion. J Biol Chem. 2008;283(38):25786–93.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Calabria AC, Li C, Gallagher PR, Stanley CA, De Leon DD. GLP-1 receptor antagonist exendin-(9-39) elevates fasting blood glucose levels in congenital hyperinsulinism owing to inactivating mutations in the ATP-sensitive K+ channel. Diabetes. 2012;61(10):2585–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Newsholme P, Gaudel C, McClenaghan NH. Nutrient regulation of insulin secretion and beta-cell functional integrity. Adv Exp Med Biol. 2010;654:91–114.

    Article  CAS  PubMed  Google Scholar 

  39. Sorenson RL, Garry DG, Brelje TC. Structural and functional considerations of GABA in islets of Langerhans. Beta-cells and nerves. Diabetes. 1991;40(11):1365–74.

    Article  CAS  PubMed  Google Scholar 

  40. Remedi MS, Nichols CG. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells. PLoS Med. 2008;5(10):e206.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Doliba NM, Qin W, Vatamaniuk MZ, et al. Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Am J Physiol Endocrinol Metab. 2004;286(5):E834–43.

    Article  CAS  PubMed  Google Scholar 

  42. Li C, Liu C, Nissim I, et al. Regulation of glucagon secretion in normal and diabetic human islets by gamma-hydroxybutyrate and glycine. J Biol Chem. 2013;288(6):3938–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kaufman EE, Nelson T, Goochee C, Sokoloff L. Purification and characterization of an NADP+-linked alcohol oxido-reductase which catalyzes the interconversion of gamma-hydroxybutyrate and succinic semialdehyde. J Neurochem. 1979;32(3):699–712.

    Article  CAS  PubMed  Google Scholar 

  44. Bessman SP, Fishbein WN. Gamma-hydroxybutyrate, a normal brain metabolite. Nature. 1963;200:1207–8.

    Article  CAS  PubMed  Google Scholar 

  45. Gibson KM, Hoffmann GF, Hodson AK, Bottiglieri T, Jakobs C. 4-Hydroxybutyric acid and the clinical phenotype of succinic semialdehyde dehydrogenase deficiency, an inborn error of GABA metabolism. Neuropediatrics. 1998;29(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  46. Kaufman EE, Relkin N, Nelson T. Regulation and properties of an NADP+ oxidoreductase which functions as a gamma-hydroxybutyrate dehydrogenase. J Neurochem. 1983;40(6):1639–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment  

I gratefully acknowledge the important contributions to this work by colleagues including Charles A. Stanley, Michael J. Bennett, Diva D. De León (The Children’s Hospital of Philadelphia, Philadelphia, PA), Franz M. Matschinsky (Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA) and Thomas J. Smith (Donald Danforth Plant Science Center, St Louis, MO). These studies were supported in part by NIH grants, U01DK089529, DK53012, DK22122, and a pilot grant from the Institute of Diabetes, Obesity and Metabolism (University of Pennsylvania, DK19525). Additional support was provided by the Radioimmunoassay and Islet Cores of the Diabetes Research Center of the University of Pennsylvania, Perelman School of Medicine (DK19525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Li M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, C. (2015). Insulin Secretion and the Glutamine-Glutamate-Alpha-Ketoglutarate Axis. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics