Skip to main content

Pharmacogenomics of Pain Management

  • Chapter
  • First Online:
Treatment of Chronic Pain by Medical Approaches

Abstract

Medicine has been continuously challenged, as well as stimulated, by the extraordinary variability in patient response to pharmacotherapy. The new age of identification of risk factors associated with pharmacotherapy using the methods of molecular medicine focuses on generating predictions regarding clinical outcome on the basis of each individual’s unique DNA sequence. This new field has been coined pharmacogenomics. The goal of pharmacogenomics is to use information provided by advances in human genetics to identify patients at risk for significantly altered response during pharmacotherapy. The field of pharmacogenomics represents the major drive behind the introduction of the concept of personalized medicine in which the medical treatment is customized according to the individual patient genomic signature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med. 2006;57:119–37.

    CAS  PubMed  Google Scholar 

  2. Lotsch J, Geisslinger G, Tegeder I. Genetic modulation of the pharmacological treatment of pain. Pharmacol Ther. 2009;124:168–84.

    PubMed  Google Scholar 

  3. Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81:429–44.

    CAS  PubMed  Google Scholar 

  4. Stamer UM, Zhang L, Stuber F. Personalized therapy in pain management: where do we stand? Pharmacogenomics. 2010;11:843–64.

    CAS  PubMed  Google Scholar 

  5. Lacroix-Fralish ML, Mogil JS. Progress in genetic studies of pain and analgesia. Annu Rev Pharmacol Toxicol. 2009;49:97–121.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Landau R. One size does not fit all: genetic variability of mu-opioid receptor and postoperative morphine consumption. Anesthesiology. 2006;105:235–7.

    PubMed  Google Scholar 

  7. Diatchenko L, Nackley AG, Tchivileva IE, Shabalina SA, Maixner W. Genetic architecture of human pain perception. Trends Genet. 2007;23:605–13.

    CAS  PubMed  Google Scholar 

  8. Fillingim RB, Wallace MR, Herbstman DM, Ribeiro-Dasilva M, Staud R. Genetic contributions to pain: a review of findings in humans. Oral Dis. 2008;14:673–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Nagasako EM, Oaklander AL, Dworkin RH. Congenital insensitivity to pain: an update. Pain. 2003;101:213–9.

    PubMed  Google Scholar 

  10. Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444:894–8.

    CAS  PubMed  Google Scholar 

  11. Goldberg YP, MacFarlane J, MacDonald ML, et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. 2007;71:311–9.

    CAS  PubMed  Google Scholar 

  12. Waxman SG. Neurobiology: a channel sets the gain on pain. Nature. 2006;444:831–2.

    CAS  PubMed  Google Scholar 

  13. Waxman SG, Dib-Hajj SD. Erythromelalgia: a hereditary pain syndrome enters the molecular era. Ann Neurol. 2005;57:785–8.

    PubMed  Google Scholar 

  14. Fertleman CR, Baker MD, Parker KA, et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006;52:767–74.

    CAS  PubMed  Google Scholar 

  15. Reimann F, Cox JJ, Belfer I, et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci USA. 2010;107:5148–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim H, Mittal DP, Iadarola MJ, Dionne RA. Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J Med Genet. 2006;43:e40.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Tegeder I, Costigan M, Griffin RS, et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat Med. 2006;12:1269–77.

    CAS  PubMed  Google Scholar 

  18. Tegeder I, Adolph J, Schmidt H, Woolf CJ, Geisslinger G, Lotsch J. Reduced hyperalgesia in homozygous carriers of a GTP cyclohydrolase 1 haplotype. Eur J Pain. 2008;12:1069–77.

    CAS  PubMed  Google Scholar 

  19. Kim H, Dionne RA. Lack of influence of GTP cyclohydrolase gene (GCH1) variations on pain sensitivity in humans. Mol Pain. 2007;3:6.

    PubMed Central  PubMed  Google Scholar 

  20. Lazarev M, Lamb J, Barmada MM, et al. Does the pain-protective GTP cyclohydrolase haplotype significantly alter the pattern or severity of pain in humans with chronic pancreatitis? Mol Pain. 2008;4:58.

    PubMed Central  PubMed  Google Scholar 

  21. Campbell CM, Edwards RR, Carmona C, et al. Polymorphisms in the GTP cyclohydrolase gene (GCH1) are associated with ratings of capsaicin pain. Pain. 2009;141:114–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lotsch J, Klepstad P, Doehring A, Dale O. A GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain. 2010;148:103–6.

    PubMed  Google Scholar 

  23. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116:496–526.

    CAS  PubMed  Google Scholar 

  24. Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev. 2009;41:573–643.

    CAS  PubMed  Google Scholar 

  25. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet. 2009;48:689–723.

    CAS  PubMed  Google Scholar 

  26. Zhou SF, Liu JP, Lai XS. Substrate specificity, inhibitors and regulation of human cytochrome P450 2D6 and implications in drug development. Curr Med Chem. 2009;16:2661–805.

    CAS  PubMed  Google Scholar 

  27. Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369:23–37.

    CAS  PubMed  Google Scholar 

  28. Mignat C, Wille U, Ziegler A. Affinity profiles of morphine, codeine, dihydrocodeine and their glucuronides at opioid receptor subtypes. Life Sci. 1995;56:793–9.

    CAS  PubMed  Google Scholar 

  29. Thorn CF, Klein TE, Altman RB. Codeine and morphine pathway. Pharmacogenet Genomics. 2009;19:556–8.

    CAS  PubMed  Google Scholar 

  30. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet. 2009;48:761–804.

    CAS  PubMed  Google Scholar 

  31. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med. 2009;361:827–8.

    CAS  PubMed  Google Scholar 

  32. Gasche Y, Daali Y, Fathi M, et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med. 2004;351:2827–31.

    CAS  PubMed  Google Scholar 

  33. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet. 2006;368:704.

    PubMed  Google Scholar 

  34. Madadi P, Koren G. Pharmacogenetic insights into codeine analgesia: implications to pediatric codeine use. Pharmacogenomics. 2008;9:1267–84.

    PubMed  Google Scholar 

  35. Madadi P, Koren G, Cairns J, et al. Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician. 2007;53:33–5.

    PubMed Central  PubMed  Google Scholar 

  36. Madadi P, Ross CJ, Hayden MR, et al. Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding: a case-control study. Clin Pharmacol Ther. 2009;85:31–5.

    CAS  PubMed  Google Scholar 

  37. Voronov P, Przybylo HJ, Jagannathan N. Apnea in a child after oral codeine: a genetic variant – an ultra-rapid metabolizer. Paediatr Anaesth. 2007;17:684–7.

    PubMed  Google Scholar 

  38. Enggaard TP, Poulsen L, Arendt-Nielsen L, Brosen K, Ossig J, Sindrup SH. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg. 2006;102:146–50.

    CAS  PubMed  Google Scholar 

  39. Poulsen L, Arendt-Nielsen L, Brosen K, Sindrup SH. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther. 1996;60:636–44.

    CAS  PubMed  Google Scholar 

  40. Stamer UM, Lehnen K, Hothker F, et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain. 2003;105:231–8.

    CAS  PubMed  Google Scholar 

  41. Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther. 2007;82:41–7.

    CAS  PubMed  Google Scholar 

  42. Stamer UM, Stuber F, Muders T, Musshoff F. Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg. 2008;107:926–9.

    PubMed  Google Scholar 

  43. Musshoff F, Madea B, Stuber F, Stamer UM. Enantiomeric determination of tramadol and O-desmethyltramadol by liquid chromatography- mass spectrometry and application to postoperative patients receiving tramadol. J Anal Toxicol. 2006;30:463–7.

    CAS  PubMed  Google Scholar 

  44. Pedersen RS, Damkier P, Brosen K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol. 2006;62:513–21.

    CAS  PubMed  Google Scholar 

  45. Hufschmid E, Theurillat R, Wilder-Smith CH, Thormann W. Characterization of the genetic polymorphism of dihydrocodeine O-demethylation in man via analysis of urinary dihydrocodeine and dihydromorphine by micellar electrokinetic capillary chromatography. J Chromatogr B Biomed Appl. 1996;678:43–51.

    CAS  PubMed  Google Scholar 

  46. Wilder-Smith CH, Hufschmid E, Thormann W. The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine. A cross-over study with extensive and quinidine-induced poor metabolizers. Br J Clin Pharmacol. 1998;45:575–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kharasch ED, Walker A, Isoherranen N, et al. Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin Pharmacol Ther. 2007;82:410–26.

    CAS  PubMed  Google Scholar 

  48. Lotsch J, Skarke C, Wieting J, et al. Modulation of the central nervous effects of levomethadone by genetic polymorphisms potentially affecting its metabolism, distribution, and drug action. Clin Pharmacol Ther. 2006;79:72–89.

    PubMed  Google Scholar 

  49. Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology. 2010;278:165–88. Epub 2009 Aug 26.

    CAS  PubMed  Google Scholar 

  50. Rodrigues AD. Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab Dispos. 2005;33:1567–75.

    CAS  PubMed  Google Scholar 

  51. Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 2005;77:1–16.

    CAS  PubMed  Google Scholar 

  52. Kirchheiner J, Stormer E, Meisel C, Steinbach N, Roots I, Brockmoller J. Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics. 2003;13:473–80.

    CAS  PubMed  Google Scholar 

  53. Kirchheiner J, Meineke I, Freytag G, Meisel C, Roots I, Brockmoller J. Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther. 2002;72:62–75.

    CAS  PubMed  Google Scholar 

  54. Bae JW, Kim JH, Choi CI, et al. Effect of CYP2C9*3 allele on the pharmacokinetics of naproxen in Korean subjects. Arch Pharm Res. 2009;32:269–73.

    CAS  PubMed  Google Scholar 

  55. Dorado P, Cavaco I, Caceres MC, Piedade R, Ribeiro V, Llerena A. Relationship between CYP2C8 genotypes and diclofenac 5-hydroxylation in healthy Spanish volunteers. Eur J Clin Pharmacol. 2008;64:967–70.

    CAS  PubMed  Google Scholar 

  56. Blanco G, Martinez C, Ladero JM, et al. Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet Genomics. 2008;18:37–43.

    CAS  PubMed  Google Scholar 

  57. Agundez JA, Garcia-Martin E, Martinez C. Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol. 2009;5:607–20.

    CAS  PubMed  Google Scholar 

  58. Ma J, Yang XY, Qiao L, Liang LQ, Chen MH. CYP2C9 polymorphism in non-steroidal anti-inflammatory drugs-induced gastropathy. J Dig Dis. 2008;9:79–83.

    CAS  PubMed  Google Scholar 

  59. Vonkeman HE, van de Laar MA, van der Palen J, Brouwers JR, Vermes I. Allele variants of the cytochrome P450 2C9 genotype in white subjects from The Netherlands with serious gastroduodenal ulcers attributable to the use of NSAIDs. Clin Ther. 2006;28:1670–6.

    CAS  PubMed  Google Scholar 

  60. Visser LE, van Schaik RH, van Vliet M, et al. Allelic variants of cytochrome P450 2C9 modify the interaction between nonsteroidal anti-inflammatory drugs and coumarin anticoagulants. Clin Pharmacol Ther. 2005;77:479–85.

    CAS  PubMed  Google Scholar 

  61. Park HJ, Shinn HK, Ryu SH, Lee HS, Park CS, Kang JH. Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin Pharmacol Ther. 2007;81:539–46.

    CAS  PubMed  Google Scholar 

  62. Zwisler ST, Enggaard TP, Noehr-Jensen L, et al. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam Clin Pharmacol. 2010;24:517–24. Epub 2009 Oct 21.

    CAS  PubMed  Google Scholar 

  63. Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008;83:559–66.

    CAS  PubMed  Google Scholar 

  64. Lotsch J, von Hentig N, Freynhagen R, et al. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics. 2009;19:429–36.

    PubMed  Google Scholar 

  65. Coller JK, Barratt DT, Dahlen K, Loennechen MH, Somogyi AA. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther. 2006;80:682–90.

    CAS  PubMed  Google Scholar 

  66. Levran O, O’Hara K, Peles E, et al. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum Mol Genet. 2008;17:2219–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Beyer A, Koch T, Schroder H, Schulz S, Hollt V. Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem. 2004;89:553–60.

    CAS  PubMed  Google Scholar 

  68. Margas W, Zubkoff I, Schuler HG, Janicki PK, Ruiz-Velasco V. Modulation of Ca2+ channels by heterologously expressed wild-type and mutant human micro-opioid receptors (hMORs) containing the A118G single-nucleotide polymorphism. J Neurophysiol. 2007;97:1058–67.

    CAS  PubMed  Google Scholar 

  69. Kroslak T, Laforge KS, Gianotti RJ, Ho A, Nielsen DA, Kreek MJ. The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem. 2007;103:77–87.

    CAS  PubMed  Google Scholar 

  70. Tan EC, Lim EC, Teo YY, Lim Y, Law HY, Sia AT. Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain. Mol Pain. 2009;5:32.

    PubMed Central  PubMed  Google Scholar 

  71. Walter C, Lotsch J. Meta-analysis of the relevance of the OPRM1 118A > G genetic variant for pain treatment. Pain. 2009;146:270–5.

    CAS  PubMed  Google Scholar 

  72. Bruehl S, Chung OY, Donahue BS, Burns JW. Anger regulation style, postoperative pain, and relationship to the A118G mu opioid receptor gene polymorphism: a preliminary study. J Behav Med. 2006;29:161–9.

    PubMed  Google Scholar 

  73. Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology. 2006;105:334–7.

    CAS  PubMed  Google Scholar 

  74. Chou WY, Yang LC, Lu HF, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand. 2006;50:787–92.

    CAS  PubMed  Google Scholar 

  75. Fillingim RB, Kaplan L, Staud R, et al. The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J Pain. 2005;6:159–67.

    CAS  PubMed  Google Scholar 

  76. Klepstad P, Rakvag TT, Kaasa S, et al. The 118 A > G polymorphism in the human micro-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand. 2004;48:1232–9.

    CAS  PubMed  Google Scholar 

  77. Oertel BG, Schmidt R, Schneider A, Geisslinger G, Lotsch J. The mu-opioid receptor gene polymorphism 118A > G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenet Genomics. 2006;16:625–36.

    CAS  PubMed  Google Scholar 

  78. Sia AT, Lim Y, Lim EC, et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology. 2008;109:520–6.

    CAS  PubMed  Google Scholar 

  79. Wand GS, McCaul M, Yang X, et al. The mu-opioid receptor gene polymorphism (A118G) alters HPA axis activation induced by opioid receptor blockade. Neuropsychopharmacology. 2002;26:106–14.

    CAS  PubMed  Google Scholar 

  80. Ginosar Y, Davidson EM, Meroz Y, Blotnick S, Shacham M, Caraco Y. Mu-opioid receptor (A118G) single-nucleotide polymorphism affects alfentanil requirements for extracorporeal shock wave lithotripsy: a pharmacokinetic-pharmacodynamic study. Br J Anaesth. 2009;103:420–7.

    CAS  PubMed  Google Scholar 

  81. Wu WD, Wang Y, Fang YM, Zhou HY. Polymorphism of the micro-opioid receptor gene (OPRM1 118A > G) affects fentanyl-induced analgesia during anesthesia and recovery. Mol Diagn Ther. 2009;13:331–7.

    CAS  PubMed  Google Scholar 

  82. Lotsch J, Stuck B, Hummel T. The human mu-opioid receptor gene polymorphism 118A > G decreases cortical activation in response to specific nociceptive stimulation. Behav Neurosci. 2006;120:1218–24.

    PubMed  Google Scholar 

  83. Lotsch J, Freynhagen R, Geisslinger G. Are polymorphisms in the mu-opioid receptor important for opioid therapy? Schmerz. 2005;19:378–82. 384–95.

    CAS  PubMed  Google Scholar 

  84. Lotsch J, Geisslinger G. Relevance of frequent mu-opioid receptor polymorphisms for opioid activity in healthy volunteers. Pharmacogenomics J. 2006;6:200–10.

    CAS  PubMed  Google Scholar 

  85. Lotsch J, Geisslinger G. Current evidence for a genetic modulation of the response to analgesics. Pain. 2006;121:1–5.

    PubMed  Google Scholar 

  86. Lotsch J, Skarke C, Grosch S, Darimont J, Schmidt H, Geisslinger G. The polymorphism A118G of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine. Pharmacogenetics. 2002;12:3–9.

    CAS  PubMed  Google Scholar 

  87. Lotsch J, Zimmermann M, Darimont J, et al. Does the A118G polymorphism at the mu-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology. 2002;97:814–9.

    PubMed  Google Scholar 

  88. Coulbault L, Beaussier M, Verstuyft C, et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther. 2006;79:316–24.

    CAS  PubMed  Google Scholar 

  89. Fukuda K, Hayashida M, Ide S, et al. Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain. 2009;147:194–201.

    CAS  PubMed  Google Scholar 

  90. Huehne K, Leis S, Muenster T, et al. High post surgical opioid requirements in Crohn’s disease are not due to a general change in pain sensitivity. Eur J Pain. 2009;13:1036–42.

    CAS  PubMed  Google Scholar 

  91. Janicki PK, Schuler G, Francis D, et al. A genetic association study of the functional A118G polymorphism of the human mu-opioid receptor gene in patients with acute and chronic pain. Anesth Analg. 2006;103:1011–7.

    CAS  PubMed  Google Scholar 

  92. Hayashida M, Nagashima M, Satoh Y, et al. Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics. 2008;9:1605–16.

    CAS  PubMed  Google Scholar 

  93. Landau R, Kern C, Columb MO, Smiley RM, Blouin JL. Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women. Pain. 2008;139:5–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Reyes-Gibby CC, Shete S, Rakvag T, et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain. 2007;130:25–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Ramchandani VA, Umhau J, Pavon FJ, et al. A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry. 2011;16:809–17. Epub 2010 May 18.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Shabalina SA, Zaykin DV, Gris P, et al. Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum Mol Genet. 2009;18:1037–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Berthele A, Platzer S, Jochim B, et al. COMT Val108/158Met genotype affects the mu-opioid receptor system in the human brain: evidence from ligand-binding, G-protein activation and preproenkephalin mRNA expression. Neuroimage. 2005;28:185–93.

    PubMed  Google Scholar 

  98. Zubieta JK, Heitzeg MM, Smith YR, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003;299:1240–3.

    CAS  PubMed  Google Scholar 

  99. Rakvag TT, Klepstad P, Baar C, et al. The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain. 2005;116:73–8.

    CAS  PubMed  Google Scholar 

  100. Rakvag TT, Ross JR, Sato H, Skorpen F, Kaasa S, Klepstad P. Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol Pain. 2008;4:64.

    PubMed Central  PubMed  Google Scholar 

  101. Ross JR, Riley J, Taegetmeyer AB, et al. Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer. 2008;112:1390–403.

    CAS  PubMed  Google Scholar 

  102. Nackley AG, Shabalina SA, Lambert JE, et al. Low enzymatic activity haplotypes of the human catechol-O-methyltransferase gene: enrichment for marker SNPs. PLoS One. 2009;4:e5237.

    PubMed Central  PubMed  Google Scholar 

  103. Nackley AG, Shabalina SA, Tchivileva IE, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314:1930–3.

    CAS  PubMed  Google Scholar 

  104. Mogil JS, Ritchie J, Smith SB, et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J Med Genet. 2005;42:583–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Mogil JS, Wilson SG, Chesler EJ, et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci USA. 2003;100:4867–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Esser R, Berry C, Du Z, et al. Preclinical pharmacology of lumiracoxib: a novel selective inhibitor of cyclooxygenase-2. Br J Pharmacol. 2005;144:538–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Cipollone F, Patrono C. Cyclooxygenase-2 polymorphism: putting a brake on the inflammatory response to vascular injury? Arterioscler Thromb Vasc Biol. 2002;22:1516–8.

    PubMed  Google Scholar 

  108. Papafili A, Hill MR, Brull DJ, et al. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol. 2002;22:1631–6.

    CAS  PubMed  Google Scholar 

  109. Skarke C, Reus M, Schmidt R, et al. The cyclooxygenase 2 genetic variant -765 G > C does not modulate the effects of celecoxib on prostaglandin E2 production. Clin Pharmacol Ther. 2006;80:621–32.

    CAS  PubMed  Google Scholar 

  110. Lee YS, Kim H, Wu TX, Wang XM, Dionne RA. Genetically mediated interindividual variation in analgesic responses to cyclooxygenase inhibitory drugs. Clin Pharmacol Ther. 2006;79:407–18.

    CAS  PubMed  Google Scholar 

  111. Lotsch J, Fluhr K, Neddermayer T, Doehring A, Geisslinger G. The consequence of concomitantly present functional genetic variants for the identification of functional genotype-phenotype associations in pain. Clin Pharmacol Ther. 2009;85:25–30.

    CAS  PubMed  Google Scholar 

  112. Kim H, Ramsay E, Lee H, Wahl S, Dionne RA. Genome-wide association study of acute post-surgical pain in humans. Pharmacogenomics. 2009;10:171–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Lotsch J, Geisslinger G. A critical appraisal of human genotyping for pain therapy. Trends Pharmacol Sci. 2010;31:312–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr K. Janicki M.D., Ph.D., DSci, DABA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Academy of Pain Medicine

About this chapter

Cite this chapter

Janicki, P.K. (2015). Pharmacogenomics of Pain Management. In: Deer, T., Leong, M., Gordin, V. (eds) Treatment of Chronic Pain by Medical Approaches. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1818-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1818-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1817-1

  • Online ISBN: 978-1-4939-1818-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics