Skip to main content

Viral Epigenetics

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus’s normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can have either a direct or indirect effect on epigenetic regulation of cellular expression. Nevertheless, many questions still remain with respect to the specific mechanisms underlying epigenetic regulation of the viruses and transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19:273–280

    CAS  PubMed  Google Scholar 

  2. Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. Chembiochem 12:206–222

    CAS  PubMed  Google Scholar 

  3. Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SW, Cross GA, Cui L, Dimitrov SI, Doenecke D, Eirin-Lopez JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5:7

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Ahmad K, Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 99(Suppl 4):16477–16484

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen P, Zhao J, Li G (2013) Histone variants in development and diseases. J Genet Genomics 40:355–365

    CAS  PubMed  Google Scholar 

  6. Filipescu D, Szenker E, Almouzni G (2013) Developmental roles of histone H3 variants and their chaperones. Trends Genet 29(11): 630–640

    Google Scholar 

  7. MacAlpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5:a010207

    PubMed  Google Scholar 

  8. Raisner RM, Madhani HD (2006) Patterning chromatin: form and function for H2A.Z variant nucleosomes. Curr Opin Genet Dev 16:119–124

    CAS  PubMed  Google Scholar 

  9. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601

    CAS  PubMed  Google Scholar 

  11. Balakrishnan L, Milavetz B (2007) Histone hyperacetylation in the coding region of chromatin undergoing transcription in SV40 minichromosomes is a dynamic process regulated directly by the presence of RNA polymerase II. J Mol Biol 365:18–30

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Nakatani Y (2001) Histone acetylases—versatile players. Genes Cells 6:79–86

    CAS  PubMed  Google Scholar 

  13. Schapira M (2011) Structural biology of human metal-dependent histone deacetylases. Handb Exp Pharmacol 206:225–240

    CAS  PubMed  Google Scholar 

  14. Bordo D (2013) Structure and evolution of human sirtuins. Curr Drug Targets 14:662–665

    CAS  PubMed  Google Scholar 

  15. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    CAS  PubMed  Google Scholar 

  16. Kallestad L, Woods E, Christensen K, Gefroh A, Balakrishnan L, Milavetz B (2013) Transcription and replication result in distinct epigenetic marks following repression of early gene expression. Front Genet 4:140

    PubMed Central  PubMed  Google Scholar 

  17. Balakrishnan L, Gefroh A, Milavetz B (2010) Histone H4 lysine 20 mono- and tri-methylation define distinct biological processes in SV40 minichromosomes. Cell Cycle 9:1320–1332

    CAS  PubMed  Google Scholar 

  18. Milavetz B, Kallestad L, Gefroh A, Adams N, Woods E, Balakrishnan L (2012) Virion-mediated transfer of SV40 epigenetic information. Epigenetics 7:528–534

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Tempera I, Lieberman PM (2010) Chromatin organization of gammaherpesvirus latent genomes. Biochim Biophys Acta 1799:236–245

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS (2009) Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol 19:218–228

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Hamid NA, Brown C, Gaston K (2009) The regulation of cell proliferation by the papillomavirus early proteins. Cell Mol Life Sci 66:1700–1717

    CAS  PubMed  Google Scholar 

  22. Ben-Israel H, Kleinberger T (2002) Adenovirus and cell cycle control. Front Biosci 7:d1369–d1395

    CAS  PubMed  Google Scholar 

  23. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    CAS  PubMed  Google Scholar 

  24. Berk AJ (2005) Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24:7673–7685

    CAS  PubMed  Google Scholar 

  25. Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK (2008) Epigenetic reprogramming by adenovirus e1a. Science 321:1086–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurdistani SK, Berk AJ (2008) Adenovirus small e1a alters global patterns of histone modification. Science 321:1084–1085

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Tooze J (1981) DNA tumor viruses, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  28. Balakrishnan L, Milavetz B (2005) Programmed remodeling of hyperacetylated histone H4 and H3 organization on the SV40 genome during lytic infection. Virology 334:111–123

    CAS  PubMed  Google Scholar 

  29. Balakrishnan L, Milavetz B (2006) Reorganization of RNA polymerase II on the SV40 genome occurs coordinately with the early to late transcriptional switch. Virology 345:31–43

    CAS  PubMed  Google Scholar 

  30. Balakrishnan L, Milavetz B (2007) Histone hyperacetylation during SV40 transcription is regulated by p300 and RNA polymerase II translocation. J Mol Biol 371:1022–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Balakrishnan L, Milavetz B (2009) Dual agarose magnetic (DAM) ChIP. BMC Res Notes 2:250

    PubMed Central  PubMed  Google Scholar 

  32. Karlin S, Doerfler W, Cardon LR (1994) Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J Virol 68:2889–2897

    CAS  PubMed Central  PubMed  Google Scholar 

  33. White MK, Safak M, Khalili K (2009) Regulation of gene expression in primate polyomaviruses. J Virol 83:10846–10856

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Chang CF, Wang M, Fang CY, Chen PL, Wu SF, Chan MW, Chang D (2011) Analysis of DNA methylation in human BK virus. Virus Genes 43:201–207

    CAS  PubMed  Google Scholar 

  35. Saenz Robles MT, Shivalila C, Wano J, Sorrells S, Roos A, Pipas JM (2013) Two independent regions of simian virus 40 T antigen increase CBP/p300 levels, alter patterns of cellular histone acetylation, and immortalize primary cells. J Virol 87:13499–13509

    PubMed Central  PubMed  Google Scholar 

  36. Valls E, Blanco-Garcia N, Aquizu N, Piedra D, Estaras C, de la Cruz X, Martinez-Balbas MA (2007) Involvement of chromatin and histone deacetylation in SV40 T antigen transcription regulation. Nucleic Acids Res 35:1958–1968

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Shimazu T, Komatsu Y, Nakayama KI, Fukazawa H, Horinouchi S, Yoshida M (2006) Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene 25:7391–7400

    CAS  PubMed  Google Scholar 

  38. Watanabe H, Soejima K, Yasuda H, Kawada I, Nakachi I, Yoda S, Naoki K, Ishizaka A (2008) Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int 8:15

    PubMed Central  PubMed  Google Scholar 

  39. Schaffhausen BS, Benjamin TL (1976) Deficiency in histone acetylation in nontransforming host range mutants of polyoma virus. Proc Natl Acad Sci U S A 73:1092–1096

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Xie AY, Bermudez VP, Folk WR (2002) Stimulation of DNA replication from the polyomavirus origin by PCAF and GCN5 acetyltransferases: acetylation of large T antigen. Mol Cell Biol 22:7907–7918

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Dahl J, Chen HI, George M, Benjamin TL (2007) Polyomavirus small T antigen controls viral chromatin modifications through effects on kinetics of virus growth and cell cycle progression. J Virol 81:10064–10071

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Wollebo HS, Woldemichaele B, Khalili K, Safak M, White MK (2013) Epigenetic regulation of polyomavirus JC. Virol J 10:264

    PubMed Central  PubMed  Google Scholar 

  43. Kopp MU, Winterhalter KH, Trueb B (1997) DNA methylation accounts for the inhibition of collagen VI expression in transformed fibroblasts. Eur J Biochem 249:489–496

    CAS  PubMed  Google Scholar 

  44. Toyooka S, Carbone M, Toyooka KO, Bocchetta M, Shivapurkar N, Minna JD, Gazdar AF (2002) Progressive aberrant methylation of the RASSF1A gene in simian virus 40 infected human mesothelial cells. Oncogene 21:4340–4344

    CAS  PubMed  Google Scholar 

  45. Helmbold P, Lahtz C, Enk A, Herrmann-Trost P, Marsch W, Kutzner H, Dammann RH (2009) Frequent occurrence of RASSF1A promoter hypermethylation and Merkel cell polyomavirus in Merkel cell carcinoma. Mol Carcinog 48:903–909

    CAS  PubMed  Google Scholar 

  46. Tooze J, Acheson NH (1980) DNA tumor viruses, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  47. Russell WC, Laver WG, Sanderson PJ (1968) Internal components of adenovirus. Nature 219:1127–1130

    CAS  PubMed  Google Scholar 

  48. Everitt E, Sundquist B, Pettersson U, Philipson L (1973) Structural proteins of adenoviruses. X. Isolation and topography of low molecular weight antigens from the virion of adenovirus type 2. Virology 52:130–147

    CAS  PubMed  Google Scholar 

  49. Brown DT, Westphal M, Burlingham BT, Winterhoff U, Doerfler W (1975) Structure and composition of the adenovirus type 2 core. J Virol 16:366–387

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Maizel JV Jr, White DO, Scharff MD (1968) The polypeptides of adenovirus. II. Soluble proteins, cores, top components and the structure of the virion. Virology 36:126–136

    CAS  PubMed  Google Scholar 

  51. Maizel JV Jr, White DO, Scharff MD (1968) The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36:115–125

    CAS  PubMed  Google Scholar 

  52. Mirza MA, Weber J (1982) Structure of adenovirus chromatin. Biochim Biophys Acta 696:76–86

    CAS  PubMed  Google Scholar 

  53. Corden J, Engelking HM, Pearson GD (1976) Chromatin-like organization of the adenovirus chromosome. Proc Natl Acad Sci U S A, 73(2):401–404

    Google Scholar 

  54. Sergeant A, Tigges MA, Raskas HJ (1979) Nucleosome-like structural subunits of intranuclear parental adenovirus type 2 DNA. J Virol 29:888–898

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Daniell E, Groff DE, Fedor MJ (1981) Adenovirus chromatin structure at different stages of infection. Mol Cell Biol 1:1094–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Beyer AL, Bouton AH, Hodge LD, Miller OL Jr (1981) Visualization of the major late R strand transcription unit of adenovirus serotype 2. J Mol Biol 147:269–295

    CAS  PubMed  Google Scholar 

  57. Dery CV, Toth M, Brown M, Horvath J, Allaire S, Weber JM (1985) The structure of adenovirus chromatin in infected cells. J Gen Virol 66(Pt 12):2671–2684

    CAS  PubMed  Google Scholar 

  58. Wong ML, Hsu MT (1988) Psoralen-cross-linking study of the organization of intracellular adenovirus nucleoprotein complexes. J Virol 62:1227–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ross PJ, Kennedy MA, Parks RJ (2009) Host cell detection of noncoding stuffer DNA contained in helper-dependent adenovirus vectors leads to epigenetic repression of transgene expression. J Virol 83:8409–8417

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Komatsu T, Haruki H, Nagata K (2011) Cellular and viral chromatin proteins are positive factors in the regulation of adenovirus gene expression. Nucleic Acids Res 39:889–901

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Ross PJ, Kennedy MA, Christou C, Risco Quiroz M, Poulin KL, Parks RJ (2011) Assembly of helper-dependent adenovirus DNA into chromatin promotes efficient gene expression. J Virol 85:3950–3958

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Komatsu T, Nagata K (2012) Replication-uncoupled histone deposition during adenovirus DNA replication. J Virol 86:6701–6711

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ferrari R, Su T, Li B, Bonora G, Oberai A, Chan Y, Sasidharan R, Berk AJ, Pellegrini M, Kurdistani SK (2012) Reorganization of the host epigenome by a viral oncogene. Genome Res 22:1212–1221

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    CAS  PubMed  Google Scholar 

  65. Chatterjee PK, Vayda ME, Flint SJ (1986) Adenoviral protein VII packages intracellular viral DNA throughout the early phase of infection. EMBO J 5:1633–1644

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Strunze S, Engelke MF, Wang IH, Puntener D, Boucke K, Schleich S, Way M, Schoenenberger P, Burckhardt CJ, Greber UF (2011) Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe 10:210–223

    CAS  PubMed  Google Scholar 

  67. Komatsu T, Sekiya T, Nagata K (2013) DNA replication-dependent binding of CTCF plays a critical role in adenovirus genome functions. Sci Rep 3:2187

    PubMed Central  PubMed  Google Scholar 

  68. Brown M, Weber J (1980) Virion core-like organization of intranuclear adenovirus chromatin late in infection. Virology 107:306–310

    CAS  PubMed  Google Scholar 

  69. Daniell E (1981) Subgenomic viral DNA species synthesized in simian cells by human and simian adenoviruses. J Virol 37:620–627

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Gunthert U, Schweiger M, Stupp M, Doerfler W (1976) DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Proc Natl Acad Sci U S A 73:3923–3927

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Kammer C, Doerfler W (1995) Genomic sequencing reveals absence of DNA methylation in the major late promoter of adenovirus type 2 DNA in the virion and in productively infected cells. FEBS Lett 362:301–305

    CAS  PubMed  Google Scholar 

  72. Hochstein N, Muiznieks I, Mangel L, Brondke H, Doerfler W (2007) Epigenetic status of an adenovirus type 12 transgenome upon long-term cultivation in hamster cells. J Virol 81:5349–5361

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Sutter D, Doerfler W (1980) Methylation of integrated viral DNA sequences in hamster cells transformed by adenovirus 12. Cold Spring Harb Symp Quant Biol 44(Pt 1):565–568

    CAS  PubMed  Google Scholar 

  74. Lichtenberg U, Zock C, Doerfler W (1988) Integration of foreign DNA into mammalian genome can be associated with hypomethylation at site of insertion. Virus Res 11:335–342

    CAS  PubMed  Google Scholar 

  75. Lichtenberg U, Zock C, Doerfler W (1987) Insertion of adenovirus type 12 DNA in the vicinity of an intracisternal A particle genome in Syrian hamster tumor cells. J Virol 61:2719–2726

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Heller H, Kammer C, Wilgenbus P, Doerfler W (1995) Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc Natl Acad Sci U S A 92:5515–5519

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Remus R, Kammer C, Heller H, Schmitz B, Schell G, Doerfler W (1999) Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences. J Virol 73:1010–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Kim K, Garner-Hamrick PA, Fisher C, Lee D, Lambert PF (2003) Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection. J Virol 77:12450–12459

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Vinokurova S, von Knebel Doeberitz M (2011) Differential methylation of the HPV 16 upstream regulatory region during epithelial differentiation and neoplastic transformation. PLoS One 6:e24451

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Wooldridge TR, Laimins LA (2008) Regulation of human papillomavirus type 31 gene expression during the differentiation-dependent life cycle through histone modifications and transcription factor binding. Virology 374:371–380

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Johannsen E, Lambert PF (2013) Epigenetics of human papillomaviruses. Virology 445:205–212

    CAS  PubMed  Google Scholar 

  82. Mirabello L, Schiffman M, Ghosh A, Rodriguez AC, Vasiljevic N, Wentzensen N, Herrero R, Hildesheim A, Wacholder S, Scibior-Bentkowska D, Burk RD, Lorincz AT (2013) Elevated methylation of HPV16 DNA is associated with the development of high grade cervical intraepithelial neoplasia. Int J Cancer 132:1412–1422

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Bhattacharjee B, Sengupta S (2006) CpG methylation of HPV 16 LCR at E2 binding site proximal to P97 is associated with cervical cancer in presence of intact E2. Virology 354:280–285

    CAS  PubMed  Google Scholar 

  84. Badal S, Badal V, Calleja-Macias IE, Kalantari M, Chuang LS, Li BF, Bernard HU (2004) The human papillomavirus-18 genome is efficiently targeted by cellular DNA methylation. Virology 324:483–492

    CAS  PubMed  Google Scholar 

  85. Wilson GA, Lechner M, Koferle A, Caren H, Butcher LM, Feber A, Fenton T, Jay A, Boshoff C, Beck S (2013) Integrated virus-host methylome analysis in head and neck squamous cell carcinoma. Epigenetics 8:953–961

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lechner M, Fenton T, West J, Wilson G, Feber A, Henderson S, Thirlwell C, Dibra HK, Jay A, Butcher L, Chakravarthy AR, Gratrix F, Patel N, Vaz F, O’Flynn P, Kalavrezos N, Teschendorff AE, Boshoff C, Beck S (2013) Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med 5:15

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Grywalska E, Markowicz J, Grabarczyk P, Pasiarski M, Rolinski J (2013) Epstein-Barr virus-associated lymphoproliferative disorders. Postepy Hig Med Dosw 67:481–490

    Google Scholar 

  88. Tsao SW, Tsang CM, Pang PS, Zhang G, Chen H, Lo KW (2012) The biology of EBV infection in human epithelial cells. Semin Cancer Biol 22:137–143

    CAS  PubMed  Google Scholar 

  89. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    CAS  PubMed  Google Scholar 

  90. Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y (1995) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714

    CAS  PubMed  Google Scholar 

  91. Arvey A, Tempera I, Lieberman PM (2013) Interpreting the Epstein-Barr Virus (EBV) epigenome using high-throughput data. Viruses 5:1042–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Tempera I, Wiedmer A, Dheekollu J, Lieberman PM (2010) CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 6:e1001048

    PubMed Central  PubMed  Google Scholar 

  93. Kalla M, Hammerschmidt W (2012) Human B cells on their route to latent infection—early but transient expression of lytic genes of Epstein-Barr virus. Eur J Cell Biol 91:65–69

    CAS  PubMed  Google Scholar 

  94. Jayachandra S, Low KG, Thlick AE, Yu J, Ling PD, Chang Y, Moore PS (1999) Three unrelated viral transforming proteins (vIRF, EBNA2, and E1A) induce the MYC oncogene through the interferon-responsive PRF element by using different transcription coadaptors. Proc Natl Acad Sci U S A 96:11566–11571

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Wang L, Grossman SR, Kieff E (2000) Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A 97:430–435

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M, Murray PG, Woodman CB (2011) Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin’s lymphoma. J Virol 85:9568–9577

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Caliskan M, Cusanovich DA, Ober C, Gilad Y (2011) The effects of EBV transformation on gene expression levels and methylation profiles. Hum Mol Genet 20:1643–1652

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Hernando H, Islam AB, Rodriguez-Ubreva J, Forne I, Ciudad L, Imhof A, Shannon-Lowe C, Ballestar E (2014) Epstein-Barr virus-mediated transformation of B cells induces global chromatin changes independent to the acquisition of proliferation. Nucleic Acids Res 42:249–263

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Queen KJ, Shi M, Zhang F, Cvek U, Scott RS (2013) Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer 132:2076–2086

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Hernando H, Shannon-Lowe C, Islam AB, Al-Shahrour F, Rodriguez-Ubreva J, Rodriguez-Cortez VC, Javierre BM, Mangas C, Fernandez AF, Parra M, Delecluse HJ, Esteller M, Lopez-Granados E, Fraga MF, Lopez-Bigas N, Ballestar E (2013) The B cell transcription program mediates hypomethylation and overexpression of key genes in Epstein-Barr virus-associated proliferative conversion. Genome Biol 14:R3

    PubMed Central  PubMed  Google Scholar 

  101. Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ (2009) Epstein-Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog 5:e1000492

    PubMed Central  PubMed  Google Scholar 

  102. Toth Z, Brulois K, Jung JU (2013) The chromatin landscape of Kaposi’s sarcoma-associated herpesvirus. Viruses 5:1346–1373

    PubMed Central  PubMed  Google Scholar 

  103. Gunther T, Grundhoff A (2010) The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLoS Pathog 6:e1000935

    PubMed Central  PubMed  Google Scholar 

  104. Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM (2003) Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol 77:11425–11435

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Stedman W, Deng Z, Lu F, Lieberman PM (2004) ORC, MCM, and histone hyperacetylation at the Kaposi’s sarcoma-associated herpesvirus latent replication origin. J Virol 78:12566–12575

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Chang PC, Fitzgerald LD, Hsia DA, Izumiya Y, Wu CY, Hsieh WP, Lin SF, Campbell M, Lam KS, Luciw PA, Tepper CG, Kung HJ (2011) Histone demethylase JMJD2A regulates Kaposi’s sarcoma-associated herpesvirus replication and is targeted by a viral transcriptional factor. J Virol 85:3283–3293

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Kim KY, Huerta SB, Izumiya C, Wang DH, Martinez A, Shevchenko B, Kung HJ, Campbell M, Izumiya Y (2013) Kaposi’s sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen regulates the KSHV epigenome by association with the histone demethylase KDM3A. J Virol 87:6782–6793

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, Yamanishi K (2001) Activation of latent Kaposi’s sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci U S A 98:4119–4124

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Luger K, Kaye KM (2006) Kaposi’s sarcoma-associated herpesvirus LANA hitches a ride on the chromosome. Cell Cycle 5:1048–1052

    CAS  PubMed  Google Scholar 

  110. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36:683–685

    CAS  PubMed  Google Scholar 

  111. Lim C, Gwack Y, Hwang S, Kim S, Choe J (2001) The transcriptional activity of cAMP response element-binding protein-binding protein is modulated by the latency associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Biol Chem 276:31016–31022

    CAS  PubMed  Google Scholar 

  112. Lu F, Tsai K, Chen HS, Wikramasinghe P, Davuluri RV, Showe L, Domsic J, Marmorstein R, Lieberman PM (2012) Identification of host-chromosome binding sites and candidate gene targets for Kaposi’s sarcoma-associated herpesvirus LANA. J Virol 86:5752–5762

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health grants AI094441 to B.I.M. and GM098328 to L.B. We thank Christopher Petrides for assistance with Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry I. Milavetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Milavetz, B.I., Balakrishnan, L. (2015). Viral Epigenetics. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics