Skip to main content

Response to Acidity: The MondoA–TXNIP Checkpoint Couples the Acidic Tumor Microenvironment to Cell Metabolism

  • Chapter
  • First Online:
Molecular Genetics of Dysregulated pH Homeostasis
  • 602 Accesses

Abstract

Cancer cells reprogram their metabolism toward aerobic glycolysis, which produces lactate to generate an acidic microenvironment. Acidosis-driven activation of the MondoA transcription factor results in its activation of thioredoxin-interacting protein (TXNIP), which is a potent repressor of aerobic glycolysis. We propose a checkpoint function for the MondoA–TXNIP axis that normalizes glycolytic flux in response to a low pH microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-KG:

α-ketoglutarate

AMPK:

AMP-activated protein kinase

AOA:

aminooxyacetate

ARRDC4:

arrestin domain containing 4

B-ALL:

B cell acute lymphoblastic leukemia

bHLHZip:

basic helix-loop-helix leucine zipper

ChREBP:

carbohydrate-response element-binding protein

DCD:

dimerization and cytoplasmic localization domain

ECM:

extracellular matrix

G6P:

glucose 6-phosphate

GPCR:

G protein-coupled receptor

GRE:

glucocorticoid response element

HDAC:

histone deacetylase

HIF-1:

hypoxia-inducible factor 1

HMECs:

human mammary epithelial cells

LA:

lactic acidosis

LDHA:

lactate dehydrogenase A

MCR:

mondo conserved region

MCT:

monocarboxylate/H+ cotransporter

MEFs:

murine embryonic fibroblasts

Mlx:

max-like-protein X

mTORC1:

mammalian target of rapamycin complex 1

NES:

nuclear export signal

NHE:

Na+/H+ exchanger

OMM:

outer membrane of the mitochondria

OXPHOS:

oxidative phosphorylation

PFK1:

prosphofructokinase 1

PHD2:

prolyl hydroxylase domain 2

pHe:

extracellular pH

pHi:

intracellular pH

ROS:

reactive oxygen species

TAD:

transcriptional activation domain

TCA:

tricarboxylic acid

TME:

Tumor Microenvironment

TXNIP:

thioredoxin-interacting protein

v-ATPase:

vacuolar-type H+-ATPase

References

  1. Andres V, Carreras J, Cusso R (1990) Regulation of muscle phosphofructokinase by physiological concentrations of bisphosphorylated hexoses: effect of alkalinization. Biochem Biophys Res Commun 172:328–334

    PubMed  CAS  Google Scholar 

  2. Anthony TG and Wek RC (2012) TXNIP switches tracks toward a terminal UPR. Cell Metab 16:135–137

    PubMed  CAS  Google Scholar 

  3. Aoyama K, Burns DM, Suh SW, Garnier P, Matsumori Y, Shiina H, Swanson RA (2005) Acidosis causes endoplasmic reticulum stress and caspase-12-mediated astrocyte death. J Cereb Blood Flow Metab 25:358–370

    PubMed  CAS  Google Scholar 

  4. Baird FE, Pinilla-Tenas JJ, Ogilvie WL, Ganapathy V, Hundal HS, Taylor PM (2006) Evidence for allosteric regulation of pH-sensitive System A (SNAT2) and System N (SNAT5) amino acid transporter activity involving a conserved histidine residue. Biochem J 397:369–375

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390

    PubMed  CAS  Google Scholar 

  6. Billin AN, Ayer DE (2006) The Mlx network: evidence for a parallel Max-like transcriptional network that regulates energy metabolism. In: Eisenman RN (ed) The Myc/Max/Mad transcription factor network. Springer, Heidelberg, pp. 255–278.

    Google Scholar 

  7. Billin AN, Eilers AL, Queva C, Ayer DE (1999) Mlx, a novel max-like BHLHZip protein that interacts with the max network of transcription factors. J Biol Chem 274:36344–36350

    PubMed  CAS  Google Scholar 

  8. Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE (2000) MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol 20:8845–8854

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Boersma BJ, Reimers M, Yi M, Ludwig JA, Luke BT, Stephens RM, Yfantis HG, Lee DH, Weinstein JN, Ambs S (2008) A stromal gene signature associated with inflammatory breast cancer. Int J Cancer 122:1324–1332

    PubMed  CAS  Google Scholar 

  10. Brisson L, Reshkin SJ, Gore J, Roger S (2012) pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 91:847–860

    PubMed  CAS  Google Scholar 

  11. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349–353

    PubMed  CAS  Google Scholar 

  12. Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B, Schormann W, Maccoux LJ, Schug M, Schumann A et al (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res 12, R44.

    PubMed  PubMed Central  Google Scholar 

  13. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+exchanger in metastasis. Nat Rev Cancer 5:786–795

    PubMed  CAS  Google Scholar 

  14. Chandriani S, Frengen E, Cowling VH, Pendergrass SA, Perou CM, Whitfield ML, Cole MD (2009) A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One 4:e6693

    PubMed  PubMed Central  Google Scholar 

  15. Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A (2008a) Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 57:938–944

    CAS  Google Scholar 

  16. Chen JL, Lucas JE, Schroeder T, Mori S, Wu J, Nevins J, Dewhirst M, West M, Chi JT (2008b) The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet 4:e1000293

    Google Scholar 

  17. Chen JL, Merl D, Peterson CW, Wu J, Liu P, Yin H, Muoio DM, Ayer DE, West M, Chi J-T (2010) Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through Mondo. A PLoS Genet 6:18

    Google Scholar 

  18. Chiche J, Le Fur Y, Vilmen C, Frassineti F, Daniel L, Halestrap AP, Cozzone PJ, Pouyssegur J, Lutz NW (2012) In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 130:1511–1520

    PubMed  CAS  Google Scholar 

  19. Chutkow WA, Patwari P, Yoshioka J, Lee RT (2008) Thioredoxin-interacting protein (Txnip) is a critical regulator of hepatic glucose production. J Biol Chem 283:2397–2406

    PubMed  CAS  Google Scholar 

  20. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15:6479–6483

    PubMed  CAS  PubMed Central  Google Scholar 

  21. De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P (2012) Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One 7:e46571

    PubMed  CAS  PubMed Central  Google Scholar 

  22. DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    PubMed  CAS  PubMed Central  Google Scholar 

  23. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008a) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    CAS  Google Scholar 

  24. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008b) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    CAS  Google Scholar 

  25. Dentin R, Tomas-Cobos L, Foufelle F, Leopold J, Girard J, Postic C, Ferre P (2012) Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol 56:199–209

    PubMed  CAS  Google Scholar 

  26. Donoso P, Hidalgo C (1993) pH-sensitive calcium release in triads from frog skeletal muscle. Rapid filtration studies. J Biol Chem 268:25432–25438

    PubMed  CAS  Google Scholar 

  27. Donoso P, Beltran M, Hidalgo C (1996) Luminal pH regulated calcium release kinetics in sarcoplasmic reticulum vesicles. Biochemistry 35:13419–13425

    PubMed  CAS  Google Scholar 

  28. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    PubMed  CAS  Google Scholar 

  29. Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Eilers AL, Sundwall E, Lin M, Sullivan AA, Ayer DE (2002) A novel heterodimerization domain, CRM1, and 14–3-3 control subcellular localization of the MondoA-Mlx heterocomplex. Mol Cell Biol 22:8514–8526

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Elgort MG, O’Shea JM, Jiang Y, Ayer DE (2010) Transcriptional and translational downregulation of Thioredoxin Interacting Protein is required for metabolic reprogramming during G1. Genes and Cancer 1:893–907

    CAS  Google Scholar 

  32. Eng CH, Yu K, Lucas J, White E, Abraham RT (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3:ra31

    PubMed  Google Scholar 

  33. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73(5):1524-1535

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Fais S, De Milito A, You H, Qin W (2007) Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res 67:10627–10630

    PubMed  CAS  Google Scholar 

  35. Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18:330–337

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    PubMed  CAS  Google Scholar 

  37. Foulkes WD, Smith IE, Reis-Filho, JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    PubMed  CAS  Google Scholar 

  38. Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL (2007) Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells. J Cell Biol 179:403–410

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP, Barber DL (2008) Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J Cell Biol 183:865–879

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Frieden C, Gilbert HR, Bock PE (1976) Phosphofructokinase. III. Correlation of the regulatory kinetic and molecular properties of the rabbit muscle enzyme. J Biol Chem 251:5644–5647

    PubMed  CAS  Google Scholar 

  41. Furlong IJ, Ascaso R, Lopez Rivas A, Collins MK (1997) Intracellular acidification induces apoptosis by stimulating ICE-like protease activity. J Cell Sci 110(Pt 5):653–661

    PubMed  CAS  Google Scholar 

  42. Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    PubMed  CAS  Google Scholar 

  45. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61

    PubMed  CAS  Google Scholar 

  46. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    PubMed  Google Scholar 

  47. Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Gottlieb RA, Nordberg J, Skowronski E, Babior BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci U S A 93:654–658

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Gummadi L, Taylor L, Curthoys NP (2012) Concurrent binding and modifications of AUF1 and HuR mediate the pH-responsive stabilization of phosphoenolpyruvate carboxykinase mRNA in kidney cells. Am J Physiol Renal Physiol 303:F1545–F1554

    Google Scholar 

  51. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, De Vos J, Hernandez JM, Hofmann WK, Mills KI, et al (2010) Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 28:2529–2537

    PubMed  CAS  Google Scholar 

  52. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385

    PubMed  CAS  Google Scholar 

  53. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    PubMed  CAS  Google Scholar 

  54. Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA (2008) Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS One 3:e2915

    PubMed  PubMed Central  Google Scholar 

  55. Havula E., Hietakangas V (2012) Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin Cell Dev Biol 23:640–647

    PubMed  CAS  Google Scholar 

  56. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, Creasman KJ, Bazarov AV, Smyth JW, Davis SE et al (2012) MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 209:679–696

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Ibrahim H, Lee YJ, Curthoys NP (2008) Renal response to metabolic acidosis: role of mRNA stabilization. Kidney Int 73, :11–18.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Ihara Y, Kihara Y, Hamano F, Yanagida K, Morishita Y, Kunita A, Yamori T, Fukayama M, Aburatani H, Shimizu T, et al (2010) The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc Natl Acad Sci USA 107:17309–17314

    Google Scholar 

  59. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    PubMed  CAS  Google Scholar 

  60. Jeon JH, Lee KN, Hwang CY, Kwon KS, You KH, Choi I (2005) Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res 65:4485–4489

    PubMed  CAS  Google Scholar 

  61. Johno H, Ogata R, Nakajima S, Hiramatsu N, Kobayashi T, Hara H, Kitamura M (2012) Acidic stress-ER stress axis for blunted activation of NF-kappaB in mesothelial cells exposed to peritoneal dialysis fluid. Nephrol Dial Transplant 27:4053–4060

    PubMed  CAS  Google Scholar 

  62. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular cell 18:283–293

    PubMed  CAS  Google Scholar 

  63. Kaadige MR, Looper RE, Kamalanaadhan S, Ayer DE (2009) Glutamine-dependent anaplerosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc Natl Acad Sci U S A 106:14878–14883

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Kaadige MR, Elgort MG, Ayer DE (2010) Coordination of glucose and glutamine utilization by an expanded Myc network. Transcription 1:36–40

    PubMed  PubMed Central  Google Scholar 

  65. Kabashima T, Kawaguchi T, Wadzinski BE, Uyeda K (2003) Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A 100:5107–5112

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    PubMed  CAS  Google Scholar 

  67. Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13:117–123

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K (2001) Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 98:13710–13715

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72:3125–3130

    PubMed  CAS  Google Scholar 

  70. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    PubMed  Google Scholar 

  71. Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE (2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther 12:1085–1097

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Kung HN, Marks JR, Chi JT (2011) Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 7:e1002229

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Kuwata F, Suzuki N, Otsuka K, Taguchi M, Sasai Y, Wakino H, Ito M, Ebihara S, Suzuki K (1991) Enzymatic regulation of glycolysis and gluconeogenesis in rabbit periodontal ligament under various physiological pH conditions. J Nihon Univ Sch Dent 33:81–90

    PubMed  CAS  Google Scholar 

  74. Laterza OF, Hansen WR, Taylor L, Curthoys NP (1997) Identification of an mRNA-binding protein and the specific elements that may mediate the pH-responsive induction of renal glutaminase mRNA. J Biol Chem 272:22481–22488

    PubMed  CAS  Google Scholar 

  75. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Leclerc I, Rutter GA, Meur G, Noordeen N (2012) Roles of Ca2+ ions in the control of ChREBP nuclear translocation. J Endocrinol 213:115–122

    PubMed  CAS  Google Scholar 

  77. Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y, Igbaria A, Shen S, Nguyen V, Backes BJ, Heiman M et al (2012) IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16:250–264

    Google Scholar 

  78. Li MV, Chang B, Imamura M, Poungvarin N, Chan L (2006) Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55:1179–1189

    PubMed  CAS  Google Scholar 

  79. Li MV, Chen W, Harmancey RN, Nuotio-Antar AM, Imamura M, Saha P, Taegtmeyer H, Chan L (2010) Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP). Biochem Biophys Res Commun 395:395–400

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Liao C, Hu B, Arno MJ, Panaretou B (2007) Genomic screening in vivo reveals the role played by vacuolar H+ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin. Mol Pharmacol 71:416–425

    PubMed  CAS  Google Scholar 

  81. Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prebois C, Rochefort H, Vignon F (2006) Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett 237:167–179

    PubMed  CAS  Google Scholar 

  82. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109:8983–8988

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Lopez-Knowles E, O’Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, Daly RJ, Musgrove EA, Sutherland RL (2010) PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 126:1121–1131

    PubMed  CAS  Google Scholar 

  84. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98

    PubMed  CAS  Google Scholar 

  85. Ma L, Robinson LN, Towle HC (2006) ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 281:28721–28730

    PubMed  CAS  Google Scholar 

  86. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK et al (2010a) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256–3276

    CAS  Google Scholar 

  87. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, Migneco G, Witkiewicz AK, Martinez-Cantarin MP, Flomenberg N et al (2010b) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 9:2423–2433

    CAS  Google Scholar 

  88. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F et al (2010c) Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9:3515–3533

    CAS  Google Scholar 

  89. Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP (2011) Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 43:1045–1051

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Matsuyama S, Reed JC (2000) Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7:1155–1165

    PubMed  CAS  Google Scholar 

  91. McBrian MA, Behbahan IS, Ferrari R, Su T, Huang TW, Li K, Hong CS, Christofk HR, Vogelauer M, Seligson DB et al (2013) Histone Acetylation Regulates Intracellular pH. Molecular cell 49:310–321

    PubMed  CAS  PubMed Central  Google Scholar 

  92. McFerrin LG, Atchley WR (2011) Evolution of the Max and Mlx networks in animals. Genome Biol Evol 3:915–937

    PubMed  CAS  PubMed Central  Google Scholar 

  93. McFerrin LG, Atchley WR (2012) A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS One 7:e34803

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Meroni G, Cairo S, Merla G, Messali S, Brent R, Ballabio A, Reymond A (2000) Mlx, a new Max-like bHLHZip family member: the center stage of a novel transcription factors regulatory pathway? Oncogene 19:3266–3277

    PubMed  CAS  Google Scholar 

  95. Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A et al (2010) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle 9:2412–2422

    PubMed  CAS  Google Scholar 

  96. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    PubMed  CAS  Google Scholar 

  97. Moreno E, Basler K (2004) dMyc transforms cells into super-competitors. Cell 117:117–129

    PubMed  CAS  Google Scholar 

  98. Moseley JB, Okada K, Balcer HI, Kovar DR, Pollard TD, Goode BL (2006) Twinfilin is an actin-filament-severing protein and promotes rapid turnover of actin structures in vivo. J Cell Sci 119:1547–1557

    PubMed  CAS  Google Scholar 

  99. Mufti J, Hajarnis S, Shepardson K, Gummadi L, Taylor L, Curthoys NP (2011) Role of AUF1 and HuR in the pH-responsive stabilization of phosphoenolpyruvate carboxykinase mRNA in LLC-PK(1)-F(+) cells. Am J Physiol Renal Physiol 301:F1066–F1077

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    PubMed  CAS  Google Scholar 

  101. Noordeen NA, Meur G, Rutter GA, Leclerc I (2012) Glucose-induced nuclear shuttling of ChREBP is mediated by sorcin and Ca(2+) ions in pancreatic beta-cells. Diabetes 61:574–585

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Oermann EK, Wu J, Guan KL, Xiong Y (2012) Alterations of metbolic genes and metabolites in cancer. Semin Cell Dev Biol 23:370–380

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Oslowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST et al (2012) Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 16:265–273

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, Campos C, Yannuzzi N, Osborne JR, Linkov I et al (2011) 18F-Fluorodeoxy-glucose Positron Emission Tomography Marks MYC-Overexpressing Human Basal-Like Breast Cancers. Cancer Res 71:5164–5174

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71:1286–1290

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, Saxena R, Ladd C, Schulze PC, Mazzini MJ et al (2007) TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 4:e158

    PubMed  PubMed Central  Google Scholar 

  107. Park HJ, Lyons JC, Ohtsubo T, Song CW (1999) Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80:1892–1897

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Park HJ, Lyons JC, Ohtsubo T, Song CW (2000) Cell cycle progression and apoptosis after irradiation in an acidic environment. Cell Death Differ 7:729–738

    PubMed  CAS  Google Scholar 

  109. Patwari P, Chutkow WA, Cummings K, Verstraeten VL, Lammerding J, Schreiter ER, Lee RT (2009) Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. J Biol Chem 284:24996–25003

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Patwari P, Lee RT (2012) An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab 23:216–222

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    PubMed  CAS  Google Scholar 

  112. Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG et al (2010) The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9:3485–3505

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Perez-Sala D, Collado-Escobar D, Mollinedo F (1995) Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem 270:6235–6242

    PubMed  CAS  Google Scholar 

  114. Peterson CW, Stoltzman CA, Sighinolfi MP, Han KS, Ayer DE (2010) Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer. Mol Cell Biol 30:2887–2895

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Peterson CW, Ayer DE (2011) An extended Myc network contributes to glucose homeostasis in cancer and diabetes. Front Biosci 16:2206–2223

    CAS  Google Scholar 

  116. Petrie JL, Al-Oanzi ZH, Arden C, Tudhope SJ, Mann J, Kieswich J, Yaqoob MM, Towle HC, Agius L (2013) Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate-mediated recruitment of MondoA to the promoter. Mol Cell Biol 33:725–738

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Postic C, Dentin R, Denechaud PD, Girard J (2007) ChREBP, a tanscriptional regulator of glucose and lipid metabolism. Annu Rev Nutr 27:179–192

    PubMed  CAS  Google Scholar 

  118. Pouyssegur J, Franchi A, L’Allemain G, Paris S (1985) Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett 190:115–119

    PubMed  CAS  Google Scholar 

  119. Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem 278:44645–44649

    PubMed  CAS  Google Scholar 

  120. Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X, Mayes PA, Wise DR, Thompson CB, Maris JM et al (2012) ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22:631–644

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Quennet V, Yaromina A, Zips D, Rosner A, Walenta S, Baumann M, Mueller-Klieser W (2006) Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol 81:130–135

    PubMed  CAS  Google Scholar 

  122. Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON (2005) Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci U S A 102:1632–1637

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Raghunand N, Gillies RJ (2000) pH and drug resistance in tumors. Drug Resist Updat 3:39–47

    PubMed  CAS  Google Scholar 

  124. Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76(Spec N 1):S11–22.

    Google Scholar 

  125. Recchi C, Chavrier P (2006). V-ATPase: a potential pH sensor. Nat Cell Biol 8:107–109

    PubMed  CAS  Google Scholar 

  126. Rich IN, Worthington-White D, Garden OA, Musk P (2000) Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na(+)/H(+) exchanger. Blood 95:1427–1434

    PubMed  CAS  Google Scholar 

  127. Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C (2006) Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24:778–789

    PubMed  CAS  Google Scholar 

  128. Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE (2006) MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 26:4863–4871

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Sansone P and Bromberg J (2011) Environment, inflammation, and cancer. Curr Opin Genet Dev 21:80–85

    PubMed  CAS  Google Scholar 

  130. Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25:575–589

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300

    PubMed  CAS  Google Scholar 

  132. Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT (2011) Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl) 89:229–236

    CAS  Google Scholar 

  133. Shanware NP, Bray K, Abraham RT (2013) The PI3K, metabolic, and autophagy networks: interactive partners in cellular health and disease. Annu Rev Pharmacol Toxicol 53:89–106

    PubMed  CAS  Google Scholar 

  134. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004a) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6:91–99

    CAS  Google Scholar 

  135. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004b) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101:3329–3335

    CAS  Google Scholar 

  136. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430

    PubMed  CAS  Google Scholar 

  137. Shin D, Jeon JH, Jeong M, Suh HW, Kim S, Kim HC, Moon OS, Kim YS, Chung JW, Yoon SR et al (2008) VDUP1 mediates nuclear export of HIF1alpha via CRM1-dependent pathway. Biochim Biophys Acta 1783:838–848

    PubMed  CAS  Google Scholar 

  138. Sloan EJ and Ayer DE (2010) Myc, Mondo and Metabolism. Genes and Cancer 1:587–596

    CAS  Google Scholar 

  139. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verrax J, Kennedy KM, Moon EJ, Dhup S, Danhier P, Frerart F et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7:e33418

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Srivastava J, Barreiro G, Groscurth S, Gingras AR, Goult BT, Critchley DR, Kelly MJ, Jacobson MP, Barber DL (2008) Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc Natl Acad Sci U S A 105:14436–14441

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Stock C, Schwab A (2009) Protons make tumor cells move like clockwork. Pflugers Arch 458:981–992

    PubMed  CAS  Google Scholar 

  143. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE (2008) Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A 105:6912–6917

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Stoltzman CA, Kaadige MR, Peterson CW, Ayer DE (2011) MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J Biol Chem 286:38027–38034

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, and DeClerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta KJ et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39:41–51

    PubMed  CAS  Google Scholar 

  148. Tsatsos NG, Davies MN, O’Callaghan BL, Towle HC (2008) Identification and function of phosphorylation in the glucose-regulated transcription factor ChREBP. Biochem J 411:261–270

    PubMed  CAS  Google Scholar 

  149. Uyeda K, Repa JJ (2006) Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4:107–110

    PubMed  CAS  Google Scholar 

  150. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    PubMed  Google Scholar 

  152. Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller-Klieser W (1997) Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150:409–415

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    PubMed  CAS  Google Scholar 

  154. Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13:907–915

    PubMed  CAS  Google Scholar 

  155. Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T et al (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 279:45626–45633

    PubMed  CAS  Google Scholar 

  156. Wang Z, Rong YP, Malone MH, Davis MC, Zhong F, Distelhorst CW (2006) Thioredoxin-interacting protein (txnip) is a glucocorticoid-regulated primary response gene involved in mediating glucocorticoid-induced apoptosis. Oncogene 25:1903–1913

    PubMed  CAS  Google Scholar 

  157. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    PubMed  CAS  Google Scholar 

  159. Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Molecular cell 40:323–332

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Wernicke CM, Richter GH, Beinvogl BC, Plehm S, Schlitter AM, Bandapalli OR, Prazeres da Costa O, Hattenhorst UE, Volkmer I, Staege MS et al (2012) MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival. Leuk Res 36:1185–1192

    PubMed  CAS  Google Scholar 

  161. Williams AC, Collard TJ, Paraskeva C (1999) An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18:3199–3204

    PubMed  CAS  Google Scholar 

  162. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Wu N, Zheng B, Shaywitz A, Dragon Y, Tower C, Bellinger G, Chen C-H, Wen J, Asara JM, McGraw TE et al (2013) AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Molecular cell 49:1–9

    Google Scholar 

  164. Yu FX, Goh SR, Dai RP, Luo Y (2009) Adenosine-containing molecules amplify glucose signaling and enhance txnip expression. Mol Endocrinol 23:932–942

    PubMed  CAS  Google Scholar 

  165. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178:93–105

    PubMed  CAS  PubMed Central  Google Scholar 

  166. Zhou J, Chng WJ (2012) Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Mitochondrion 13(3):163-169

    PubMed  Google Scholar 

  167. Zhuo de X, Niu XH, Chen YC, Xin DQ, Guo YL, Mao ZB (2010) Vitamin D3 up-regulated protein 1(VDUP1) is regulated by FOXO3A and miR-17–5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 285:31491–31501

    CAS  PubMed Central  Google Scholar 

  168. Zhou J, Yu Q, Chng WJ (2011) TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol 43:1668–1673

    PubMed  CAS  Google Scholar 

  169. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Ayer lab for their insights. R01GM055668-15, R01DK084425-04, and funds from the Huntsman Cancer Foundation support the work in our lab. The Cancer Center Support Grant P30 CA42014 supports core facility use at the Huntsman Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ye, Z., Ayer, D. (2014). Response to Acidity: The MondoA–TXNIP Checkpoint Couples the Acidic Tumor Microenvironment to Cell Metabolism. In: Chi, JT. (eds) Molecular Genetics of Dysregulated pH Homeostasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1683-2_5

Download citation

Publish with us

Policies and ethics