Skip to main content

Humanized Mice as Models for Human Disease

  • Chapter
  • First Online:
Humanized Mice for HIV Research

Abstract

The optimization and standardization of humanized mouse models has been ongoing for many years now, with development of specific models that have unique applications for discovery research and preclinical analysis of antiviral drugs. In this review, we strive to place this continuum of work into perspective, both to provide an historical footing to its progress and to urge attention to obstacles that continue to confront the full application of these models to the analysis of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mold JE, Venkatasubrahmanyam S, Burt TD, Michaelsson J, Rivera JM, Galkina SA, Weinberg K, Stoddart CA, McCune JM. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science. 2010;330(6011):1695–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mold JE, McCune JM. Immunological tolerance during fetal development: from mouse to man. Adv Immunol. 2012;115:73–111.

    Article  CAS  PubMed  Google Scholar 

  3. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Denton PW, Nochi T, Lim A, Krisko JF, Martinez-Torres F, Choudhary SK, Wahl A, Olesen R, Zou W, Di Santo JP, Margolis DM et al. Il-2 receptor gamma-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol. 2012;5(5):555–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Long BR, Stoddart CA. Alpha interferon and HIV infection cause activation of human T cells in NSG-BLT mice. J Virol. 2012 86(6):3327–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bacchetti P, Deeks SG, McCune JM. Breaking free of sample size dogma to perform innovative translational research. Sci Transl Med. 2011;3(87):87ps24.

    Article  Google Scholar 

  7. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The scid-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632–9.

    Article  CAS  PubMed  Google Scholar 

  8. Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990;172(4):1055–63.

    Article  CAS  PubMed  Google Scholar 

  9. Shih CC, Kaneshima H, Rabin L, Namikawa R, Sager P, McGowan J, McCune JM. Postexposure prophylaxis with zidovudine suppresses human immunodeficiency virus type 1 infection in SCID-hu mice in a time-dependent manner. J Infect Dis. 1991;163(3):625–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kyoizumi S, Baum CM, Kaneshima H, McCune JM, Yee EJ, Namikawa R. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood. 1992;79(7):1704–11.

    CAS  PubMed  Google Scholar 

  11. Fraser CC, Kaneshima H, Hansteen G, Kilpatrick M, Hoffman R, Chen BP. Human allogeneic stem cell maintenance and differentiation in a long-term multilineage SCID-hu graft. Blood. 1995;86(5):1680–93.

    CAS  PubMed  Google Scholar 

  12. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–6.

    Article  CAS  PubMed  Google Scholar 

  13. Walzer PD, Kim CK, Linke MJ, Pogue CL, Huerkamp MJ, Chrisp CE, Lerro AV, Wixson SK, Hall E, Shultz LD. Outbreaks of Pneumocystis carinii pneumonia in colonies of immunodeficient mice. Infect Immun. 1989;57(1):62–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. McCune J, Kaneshima H, Krowka J, Namikawa R, Outzen H, Peault B, Rabin L, Shih CC, Yee E, Lieberman M, et al. The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol. 1991;9:399–429.

    Article  CAS  PubMed  Google Scholar 

  15. Peault B, Namikawa R, Krowka J, McCune J. Experimental human hematopoiesis in immunodeficient scid mice engrafted with fetal blood-forming organs. In: Edwards RG Editor. Fetal tissue transplants in medicine. Cambridge: Cambridge University Press; 1992. p. 77–94.

    Google Scholar 

  16. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM. Infection of the SCID-hu mouse by HIV-1. Science. 1988;242(4886):1684–6.

    Article  CAS  PubMed  Google Scholar 

  17. Vandekerckhove BA, Jones D, Punnonen J, Schols D, Lin HC, Duncan B, Bacchetta R, de Vries JE, Roncarolo MG. Human Ig production and isotype switching in severe combined immunodeficient-human mice. J Immunol. 1993;151(1):128–37.

    CAS  PubMed  Google Scholar 

  18. Stoddart CA, Bales CA, Bare JC, Chkhenkeli G, Galkina SA, Kinkade AN, Moreno ME, Rivera JM, Ronquillo RE, Sloan B, Black PL. Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals. PLoS ONE. 2007;2(7):e655.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rabin L, Hincenbergs M, Moreno MB, Warren S, Linquist V, Datema R, Charpiot B, Seifert J, Kaneshima H, McCune JM. Use of standardized SCID-hu Thy/Liv mouse model for preclinical efficacy testing of anti-human immunodeficiency virus type 1 compounds. Antimicrob Agents Chemother. 1996;40(3):755–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992;89(7):2804–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Peault B, Weissman I, Baum C. Analysis of candidate human blood stem cells in “humanized” immune-deficiency SCID mice. Leukemia. 1993;7(Suppl 2):98–101.

    Google Scholar 

  22. Peault B, Weissman IL, Baum C, McCune JM, Tsukamoto A. Lymphoid reconstitution of the human fetal thymus in scid mice with CD34+ precursor cells. J Exp Med. 1991;174(5):1283–86.

    Article  CAS  PubMed  Google Scholar 

  23. Bonyhadi ML, Moss K, Voytovich A, Auten J, Kalfoglou C, Plavec I, Forestell S, Su L, Bohnlein E, Kaneshima H. RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication. J Virol. 1997;71(6):4707–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Su L, Lee R, Bonyhadi M, Matsuzaki H, Forestell S, Escaich S, Bohnlein E, Kaneshima H. Hematopoietic stem cell-based gene therapy for acquired immunodeficiency syndrome: efficient transduction and expression of RevM10 in myeloid cells in vivo and in vitro. Blood. 1997;89(7):2283–90.

    CAS  PubMed  Google Scholar 

  25. Vandekerckhove BA, Krowka JF, McCune JM, de Vries JE, Spits H, Roncarolo MG. Clonal analysis of the peripheral T cell compartment of the SCID-hu mouse. J Immunol. 1991;146(12):4173–9.

    CAS  PubMed  Google Scholar 

  26. Vandekerckhove BA, Baccala R, Jones D, Kono DH, Theofilopoulos AN, Roncarolo MG. Thymic selection of the human T cell receptor v beta repertoire in SCID-hu mice. J Exp Med. 1992;176(6):1619–24.

    Article  CAS  PubMed  Google Scholar 

  27. Vandekerckhove BA, Namikawa R, Bacchetta R, Roncarolo MG. Human hematopoietic cells and thymic epithelial cells induce tolerance via different mechanisms in the SCID-hu mouse thymus. J Exp Med. 1992;175(4):1033–43.

    Article  CAS  PubMed  Google Scholar 

  28. Roncarolo MG, Vandekerckhove B. Scid-hu mice as a model to study tolerance after fetal stem cell transplantation. Bone Marrow Transplant. 1992;9(Suppl 1):83–4.

    PubMed  Google Scholar 

  29. Baccala R, Vandekerckhove BA, Jones D, Kono DH, Roncarolo MG, Theofilopoulos AN. Bacterial superantigens mediate T cell deletions in the mouse severe combined immunodeficiency-human liver/thymus model. J Exp Med. 1993;177(5):1481–5.

    Article  CAS  PubMed  Google Scholar 

  30. Kyoizumi S, McCune JM, Namikawa R. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo. Radiat Res. 1994;137(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  31. Kyoizumi S, Murray LJ, Namikawa R. Preclinical analysis of cytokine therapy in the SCID-hu mouse. Blood. 1993;81(6):1479–88.

    CAS  PubMed  Google Scholar 

  32. Namikawa R, Ueda R, Kyoizumi S. Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice. Blood. 1993;82(8):2526–36.

    CAS  PubMed  Google Scholar 

  33. Shtivelman E, Namikawa R. Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proc Natl Acad Sci U S A. 1995;92(10):4661–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Garcia S, Freitas AA. Humanized mice: current states and perspectives. Immunol Lett. 2012;146(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.

    PubMed Central  PubMed  Google Scholar 

  38. Legrand N, Ploss A, Balling R, Becker PD, Borsotti C, Brezillon N, Debarry J, de Jong Y, Deng H, Di Santo JP, Eisenbarth S, et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe. 2009;6(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  39. Nischang M, Gers-Huber G, Audige A, Akkina R, Speck RF. Modeling HIV infection and therapies in humanized mice. Swiss Med Wkly. 2012;142:w13618.

    PubMed  Google Scholar 

  40. Drake AC, Chen Q, Chen J. Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol. 2012;9(3):215–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9.

    Article  CAS  PubMed  Google Scholar 

  42. Williams SS, Umemoto T, Kida H, Repasky EA, Bankert RB. Engraftment of human peripheral blood leukocytes into severe combined immunodeficient mice results in the long term and dynamic production of human xenoreactive antibodies. J Immunol. 1992;149(8):2830–6.

    CAS  PubMed  Google Scholar 

  43. Duchosal MA, Eming SA, McConahey PJ, Dixon FJ. Characterization of hu-pbl-scid mice with high human immunoglobulin serum levels and graft-versus-host disease. Am J Pathol. 1992;141(5):1097–1113.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Greenblatt MB, Vbranac V, Tivey T, Tsang K, Tager AM, Aliprantis AO. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS ONE. 2012;7(9):e44664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ali N, Flutter B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, Lombardi G, Nestle FO. Xenogeneic graft-versus-host-disease in NOD-SCID Il-2rgamma null mice display a T-effector memory phenotype. PLoS ONE. 2012;7(8):e44219.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J, Laning J, Fodor W, Foreman O, Burzenski L, Chase TH et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol. 2009;157(1):104–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Sandra Bridges, Cheryl Stoddart, and Jerry Zack for their careful reading of this manuscript as well as for their many contributions to humanized mouse technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. McCune MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCune, J., Shultz, L. (2014). Humanized Mice as Models for Human Disease. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_2

Download citation

Publish with us

Policies and ethics