Skip to main content

Thymic Education of Human T Cells and Regulatory T Cell Development in Humanized Mice

  • Chapter
  • First Online:
Humanized Mice for HIV Research

Abstract

The thymus is an organ that generates and educates T cells, supplying T subsets that ensure adaptive immunity and self-tolerance. Intrathymic positive selection of T cells with further post-thymic maturation and signaling provided by peripheral antigen-presenting cells (APCs) sustains a functional and regulated T cell pool. Intrathymic negative selection and generation of natural regulatory T cells (Tregs) in the thymus are essential to contain T cell autoimmunity. Humanized mouse models provide a unique opportunity to investigate these processes and their underlying mechanisms. Humanized mice can be generated by injecting human hematopoietic stem cells, with or without cotransplantation of fetal thymic tissue, to immunodeficient mice. Human thymopoiesis and T cell development in the former and latter models occur in the recipient mouse thymus and human thymic grafts, respectively. In this chapter, we summarize information on human T cell development, post-thymic interactions between T cells and APCs, as well as mechanisms maintaining tolerance that has been learned from these humanized mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mecklenburg L, Tychsen B, Paus R. Learning from nudity: lessons from the nude phenotype. Exp Dermatol. 2005;14(11):797–810.

    Article  CAS  PubMed  Google Scholar 

  2. Fink PJ, Hendricks DW. Post-thymic maturation: young T cells assert their individuality. Nat Rev Immunol. 2011;11(8):544–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29(6):848–62.

    Article  CAS  PubMed  Google Scholar 

  4. Joller N, Peters A, Anderson AC, Kuchroo VK. Immune checkpoints in central nervous system autoimmunity. Immunol Rev. 2012;248(1):122–39.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Moran AE, Hogquist KA. T-cell receptor affinity in thymic development. Immunology. 2012;135(4):261–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood. 2005;106(5):1565–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti J-C, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tary-Lehmann M, Lehmann PV, Schols D, Roncarolo MG, Saxon A. Anti-SCID mouse reactivity shapes the human CD4+ T cell repertoire in hu-PBL-SCID chimeras. J Exp Med. 1994;180(5):1817–27.

    Article  CAS  PubMed  Google Scholar 

  10. Tary-Lehmann M, Saxon A. Human mature T cells that are anergic in vivo prevail in SCID mice reconstituted with human peripheral blood. J Exp Med. 1992;175(2):503–16.

    Article  CAS  PubMed  Google Scholar 

  11. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu T-D, et al. Expression of HLA class II molecules in humanized NOD. Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS ONE. 2011;6(5):e19826.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21(7):843–58.

    Article  CAS  PubMed  Google Scholar 

  13. McCune J, Namikawa R, Kaneshima H, Shultz L, Lieberman M, Weissman I. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632–9.

    Article  CAS  PubMed  Google Scholar 

  14. Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990;172(4):1055–63.

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, VerHalen J, Madariaga ML, Xiang S, Wang S, Lan P, et al. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood. 2007;109(2):836–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Takenaka K, Prasolava TK, Wang JCY, Mortin-Toth SM, Khalouei S, Gan OI, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007;8(12):1313–23.

    Article  CAS  PubMed  Google Scholar 

  17. Lan P, Tonomura N, Shimizu A, Wang S, Yang Y-G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  18. Lan P, Wang L, Diouf B, Eguchi H, Su H, Bronson R, et al. Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood. 2004;103(10):3964–9.

    Article  CAS  PubMed  Google Scholar 

  19. Onoe T, Kalscheuer H, Chittenden M, Zhao G, Yang Y-G, Sykes M. Homeostatic expansion and phenotypic conversion of human T cells depend on peripheral interactions with APCs. J Immunol. 2010;184(12):6756–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Onoe T, Kalscheuer H, Danzl N, Chittenden M, Zhao G, Yang Y-G, et al. Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J Immunol. 2011;187(7):3895–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    Article  CAS  PubMed  Google Scholar 

  22. Tonomura N, Habiro K, Shimizu A, Sykes M, Yang Y-G. Antigen-specific human T-cell responses and T cell-dependent production of human antibodies in a humanized mouse model. Blood. 2008;111(8):4293–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol. 2009;83(14):7305–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hongo D, Hadidi S, Damrauer S, Garrigue V, Kraft D, Sachs DH, et al. Porcine thymic grafts protect human thymocytes from HIV-1-induced destruction. J Infect Dis. 2007;196(6):900–10.

    Article  PubMed  Google Scholar 

  25. Kalscheuer H, Danzl N, Onoe T, Faust T, Winchester R, Goland R, et al. A model for personalized in vivo analysis of human immune responsiveness. Sci Transl Med. 2012;4(125):125ra30.

    Google Scholar 

  26. Anderson G, Jenkinson EJ. Lymphostromal interactions in thymic development and function. Nat Rev Immunol. 2001;1(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  27. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21(1):139–76.

    Article  CAS  PubMed  Google Scholar 

  28. Capone M, Romagnoli P, Beermann F, MacDonald HR, van Meerwijk JPM. Dissociation of thymic positive and negative selection in transgenic mice expressing major histocompatibility complex class I molecules exclusively on thymic cortical epithelial cells. Blood. 2001;97(5):1336–42.

    Article  CAS  PubMed  Google Scholar 

  29. Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature. 1996;383(6595):81–5.

    Article  CAS  PubMed  Google Scholar 

  30. Lo W-L, Allen P. Self-peptides in TCR repertoire selection and peripheral T cell function. Curr Top Microbiol Immunol. 2014;373:49–67.

    Google Scholar 

  31. Krogsgaard M, Juang J, Davis MM. A role for “self” in T-cell activation. Semin Immunol. 2007;19(4):236–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhao Y, Fishman JA, Sergio JJ, Oliveros JL, Pearson DA, Szot GL, et al. Immune restoration by fetal pig thymus grafts in T cell-depleted, thymectomized mice. J Immunol. 1997;158(4):1641–9.

    CAS  PubMed  Google Scholar 

  33. Zhao Y, Sergio JJ, Swenson K, Arn JS, Sachs DH, Sykes M. Positive and negative selection of functional mouse CD4 cells by porcine MHC in pig thymus grafts. J Immunol. 1997;159(5):2100–7.

    CAS  PubMed  Google Scholar 

  34. Zhao Y, Swenson K, Sergio JJ, Arn JS, Sachs DH, Sykes M. Skin graft tolerance across a discordant xenogeneic barrier. Nat Med. 1996;2(11):1211–6.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Swenson K, Sergio JJ, Sykes M. Pig MHC mediates positive selection of mouse CD4+ T cells with a mouse MHC-restricted TCR in pig thymus grafts. J Immunol. 1998;161(3):1320–6.

    CAS  PubMed  Google Scholar 

  36. Nikolic B, Gardner JP, Scadden DT, Arn JS, Sachs DH, Sykes M. Normal development in porcine thymus grafts and specific tolerance of human T cells to porcine donor MHC. J Immunol. 1999;162(6):3402–7.

    CAS  PubMed  Google Scholar 

  37. Shimizu I, Fudaba Y, Shimizu A, Yang Y-G, Sykes M. Comparison of human T cell repertoire generated in xenogeneic porcine and human thymus grafts. Transplantation. 2008;86(4):601–10.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Alves NL, Huntington ND, Rodewald H-R, Di Santo JP. Thymic epithelial cells: the multi-tasking framework of the T cell “cradle”. Trends Immunol. 2009;30(10):468–74.

    Article  CAS  PubMed  Google Scholar 

  39. van Ewijk W, Shores EW, Singer A. Crosstalk in the mouse thymus. Immunol Today. 1994;15(5):214–7.

    Article  PubMed  Google Scholar 

  40. van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, et al. IL-7 enhances thymic human T cell development in “human immune system” Rag2-/-IL-2Rgammac-/- mice without affecting peripheral T cell homeostasis. J Immunol. 2009;183(12):7645–55.

    Article  PubMed  Google Scholar 

  41. Huntington ND, Alves NL, Legrand N, Lim A, Strick-Marchand H, Plet A, et al. Autonomous and extrinsic regulation of thymopoiesis inhuman immune system (HIS) mice. Eur J Immunol. 2011;41(10):2883–93.

    Article  CAS  PubMed  Google Scholar 

  42. Surh CD, Sprent J. Homeostatic T cell proliferation: how far can T cells be activated to self-ligands? J Exp Med. 2000;192(4):F9–14.

    Article  PubMed Central  Google Scholar 

  43. Stefanova I, Dorfman JR, Germain RN. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature. 2002;420(6914):429–34.

    Article  CAS  PubMed  Google Scholar 

  44. Lo W-L, Felix NJ, Walters JJ, Rohrs H, Gross ML, Allen PM. An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nat Immunol. 2009;10(11):1155–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kieper WC, Troy A, Burghardt JT, Ramsey C, Lee JY, Jiang H-Q, et al. Cutting edge: Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol. 2005;174(6):3158–63.

    Article  CAS  PubMed  Google Scholar 

  46. Fink PJ. The biology of recent thymic emigrants. Annu Rev Immunol. 2013;31(1):31–50.

    Article  CAS  PubMed  Google Scholar 

  47. Kalscheuer H, Onoe T, Dahmani A, Li H-W, Hölzl M, Yamada K, et al. Xenograft tolerance and immune function of human T cells developing in pig thymus xenografts. J Immunol. 2014;192(7):3442–50.

    Google Scholar 

  48. Gallegos AM, Bevan MJ. Central tolerance: good but imperfect. Immunol Rev. 2006;209(1):290–6.

    Article  PubMed  Google Scholar 

  49. Greenblatt MB, Vbranac V, Tivey T, Tsang K, Tager AM, Aliprantis AO. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS ONE. 2012;7(9):e44664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lee LA, Gritsch HA, Sergio JJ, Arn JS, Glaser RM, Sablinski T, et al. Specific tolerance across a discordant xenogeneic transplantation barrier. Proc Natl Acad Sci U S A. 1994;91(23):10864–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rodriguez-Barbosa JI, Zhao Y, Barth R, Zhao G, Arn JS, Sachs DH, et al. Enhanced CD4 reconstitution by grafting neonatal porcine tissue in alternative locations is associated with donor-specific tolerance and suppression of preexisting xenoreactive T cells. Transplantation. 2001;72(7):1223–31.

    Article  CAS  PubMed  Google Scholar 

  52. Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of [alpha]1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med. 2005;11(1):32–4.

    Article  CAS  PubMed  Google Scholar 

  53. Habiro K, Sykes M, Yang YG. Induction of human T-cell tolerance to pig xenoantigens via thymus transplantation in mice with an established human immune system. Am J Transplant. 2009;9(6):1324–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Shevach EM. Regulatory T cells in autoimmmunity. Annu Rev Immunol. 2000;18(1):423–49.

    Article  CAS  PubMed  Google Scholar 

  55. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45.

    Article  CAS  PubMed  Google Scholar 

  56. Riley JL, June CH, Blazar BR. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity. 2009;30(5):656–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bettini ML, Vignali DAA. Development of thymically derived natural regulatory T cells. Ann N Y Acad Sci. 2010;1183(1):1–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Yuan X, Malek TR. Cellular and molecular determinants for the development of natural and induced regulatory T cells. Hum Immunol. 2012;73(8):773–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+ CD25high regulatory cells in human peripheral blood. J Immunol. 2001;167(3):1245–53.

    Article  CAS  PubMed  Google Scholar 

  60. Stephens LA, Mottet C, Mason D, Powrie F. Human CD4+ CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol. 2001;31(4):1247–54.

    Article  CAS  PubMed  Google Scholar 

  61. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A. Development of human CD4+ FoxP3+ regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice. Blood. 2011;117(11):3076–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shavree Washington for assistance with the manuscript. The work of the authors discussed in this chapter was supported by the following NIH grants: RO1AI084074 (to Sykes), RC1HL100117 and R01 AI064569 (to Yang) and P01AI045897 (to Sykes and Yang) and JDRF grant 1-2007-1057 (to Sykes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Sykes MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, H., Yang, YG., Sykes, M. (2014). Thymic Education of Human T Cells and Regulatory T Cell Development in Humanized Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_11

Download citation

Publish with us

Policies and ethics