Skip to main content

Problems and Results on Intersective Sets

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 101))

Abstract

By intersective set we mean a set H ⊂ Z having the property that it intersects the difference set AA of any dense subset A of the integers. By analogy between the integers and the ring of polynomials over a finite field, the notion of intersective sets also makes sense in the latter setting. We give a survey of methods used to study intersective sets, known results and open problems in both settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If A ⊂ Z , then the upper density of A is defined by \(\overline{d}(A) = \overline{\lim }_{N\rightarrow \infty }\frac{\sharp A\cap \{1,\ldots,N\}} {N}\).

  2. 2.

    Roth’s theorem says that a set of positive upper density must contain non-trivial three-term arithmetic progressions.

  3. 3.

    The term intersective was coined by Ruzsa.

  4. 4.

    This definition is motivated by a theorem of van der Corput, which says that the set Z + is van der Corput.

  5. 5.

    Szemerédi’s theorem says that any dense subset of positive density of Z must contain arbitrarily long progression, a generalization of Roth’s theorem.

  6. 6.

    There is also the more general notion of sets multiple recurrence. A set H is called k-recurrence if whenever μ(A) > 0, there exists h ∈ H such that \(\mu (A \cap T^{-h}A \cap \cdots \cap T^{-kh}A) > 0\).

  7. 7.

    To be precise, equivalence classes of functions.

  8. 8.

    Actually, it is also a of multiple recurrence.

  9. 9.

    The relative upper density of A with respect to X is defined by \(\overline{d}_{X}(A) = \overline{\lim }_{N\rightarrow \infty }\frac{\sharp A\cap \{1,\ldots,N\}} {\sharp X\cap \{1,\ldots,N\}}\).

  10. 10.

    If h(0) = 0, then this is a special case of a theorem of Tao and Ziegler [42], which states that the primes contain configurations a, a + P 1(d), , a + P k (d) for some a, d ∈ Z with d ≠ 0, where P 1, , P k are given polynomials without constant term, another application of transference principles.

  11. 11.

    These are known as amenable groups.

  12. 12.

    In the definitions, one often have to make a choice either to consider all polynomials or just monic ones, but this doesn’t seem to matter.

References

  1. A. Balog, J. Pelikán, J. Pintz, E. Szemerédi, Difference sets without κ-th powers. Acta Math. Hungar. 65, 165–187 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Berend, Y. Bilu, Polynomials with roots modulo every integer. Proc. Am. Math. Soc. 124(6), 1663–1671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Bergelson, Sets of recurrence of Z m-actions and properties of sets of differences in Z m. J. Lond. Math. Soc. 31(2), 295–304 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Bergelson, Combinatorial and Diophantine Applications of Ergodic Theory, ed. by B. Hasselblatt, A. Katok. Handbook of Dynamical Systems, vol. 1B, (Elsevier, Amsterdam, 2006), pp. 745–841

    Google Scholar 

  5. V. Bergelson, I.J. Håland, Sets of recurrence and generalized polynomials, in Convergence in Ergodic Theory and Probability, ed. by V. Bergelson, P. March, J. Rosenblatt (Walter de Gruyter & Co, Berlin, NewYork, 1996), pp. 91–110

    Chapter  Google Scholar 

  6. V. Bergelson, A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Am. Math. Soc. 9(3), 725–753 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Bergelson, E. Lesigne, Van der corput sets in Z d. Colloq. Math. 110(1), 1–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Bergelson, A. Leibman, R. McCutcheon, Polynomial Szemerédi theorem for countable modules over integral domains and finite fields. J. Anal. Math. 95, 243–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Bergelson, I.J. Håland Knutson, R. McCutcheon, IP Systems, generalized polynomials and recurrence. Ergodic Theory Dyn. Syst. 26, 999–1019 (2006)

    Article  MATH  Google Scholar 

  10. A. Bertrand-Mathis, Ensembles intersectifs et récurrence de Poincaré. Israel J. Math. 55, 184–198 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bourgain, Ruzsa’s problem on sets of recurrence. Israel J. Math. 59(2), 150–166 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Frantzkinakis, M. Wierdl, A Hardy field extension of Szemerédi’s theorem. Adv. Math. 222, 1–43 (2009)

    Article  MathSciNet  Google Scholar 

  13. N. Frantzikinakis, Multiple recurrence and convergence for Hardy field sequences of polynomial growth. J. Anal. Math. 112, 79–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 71, 204–256 (1977)

    Article  MathSciNet  Google Scholar 

  15. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton University Press, Princeton, 1981)

    MATH  Google Scholar 

  16. H. Furstenberg, Y. Katznelson, A density version of the Hales-Jewett theorem. J. Anal. Math. 57, 64–119 (1991)

    MathSciNet  MATH  Google Scholar 

  17. B. Green, On arithmetic structures in dense sets of integers. Duke Math. J. 114(2), 215–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Green, Roth’s theorem in the primes. Ann. Math. 161(3), 1609–1636 (2005)

    Article  MATH  Google Scholar 

  19. B. Green, T. Tao, Restriction theory of the Selberg sieve, with applications. J. Theor. Nombres Bordeaux 18, 147–182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167, 481–547 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kamae, M. Mendès France, Van der Corput’s difference theorem. Israel J. Math. 31(3–4), 335–342 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Łaba, M. Hamel, Arithmetic structures in random sets. Integers Electron. J. Combin. Number Theory 8, #A4 (2008)

    Google Scholar 

  23. T.H. Lê, Intersective polynomials and the primes. J. Number Theory 130(8), 1705–1717 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. T.H. Lê, Topics in arithmetic combinatorics in function fields. Ph.D. Thesis, UCLA (2010)

    Google Scholar 

  25. T.H. Lê, Y.-R. Liu, On sets of polynomials whose difference set contains no squares. Acta Arith. 161, 127–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. T.H. Lê, C.V. Spencer, Difference sets and irreducible polynomials in function fields. B. Lond. Math. Soc. 43, 347–358 (2011)

    Article  MATH  Google Scholar 

  27. H. Li, H. Pan, Difference sets and polynomials of prime variables. Acta Arithmatica 138(1), 25–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y.-R. Liu, T.D. Wooley, Waring’s problem in function fields. J. Reine Angew. Math. 638, 1–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Lucier, Intersective sets given by a polynomial. Acta Arithmetica 123, 57–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Lucier, Difference sets and shifted primes. Acta Math. Hungar. 120(1–2), 79–102 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Lyall, A simple proof of Sárközy’s theorem. Proc. Amer. Math. Soc. 141, 2253–2264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. H.L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series Mathematics, vol. 84 (American Mathematical Society, Providence, 1994)

    Google Scholar 

  33. J. Pintz, W.L. Steiger, E. Szemerédi, On sets of natural numbers whose difference set contains no squares. J. Lond. Math. Soc. 37(2), 219–231 (1988)

    Article  MATH  Google Scholar 

  34. D.H.J. Polymath, A new proof of the density Hales-Jewett theorem. Ann. of Math. (2) 175(3), 1283–1327 (2012)

    Google Scholar 

  35. G. Rhin, Répartition modulo 1 dans un corps de séries formelles sur un corps fini. Dissertationes Math. 95, 75 pp. (1972)

    Google Scholar 

  36. I. Ruzsa, Uniform distribution, positive trigonometric polynomials and difference sets, in Seminar on Number Theory, 1981/1982, Exp.No. 18 (University Bordeaux I, Talence, 1982), 18 pp.

    Google Scholar 

  37. I. Ruzsa, Difference sets without squares. Periodica Math. Hungar. 15, 205–209 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. I. Ruzsa, On measures of intersectivity. Acta Math. Hungar. 43(3–4), 335–340 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. I. Ruzsa, T. Sanders, Difference sets and the primes. Acta Arithmetica 131, 281–301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Sárközy, On difference sets of sequences of integers, I.. Acta Math. Acad. Sci. Hungar. 31, 125–149 (1978)

    Article  MATH  Google Scholar 

  41. A. Sárközy, On difference sets of sequences of integers, III.. Acta Math. Acad. Sci. Hungar. 31, 355–386 (1978)

    Article  MATH  Google Scholar 

  42. T. Tao, T. Ziegler, The primes contain arbitrarily long polynomial progressions. Acta Math. 201, 213–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Noga Alon for helpful discussions and for his kind permission to include Theorem 5 and its proof. During the preparation of this paper, I was a member of the Institute for Advanced Study, and I would like to express my gratitude to the Institute for their generous support and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thái Hoàng Lê .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Lê, T.H. (2014). Problems and Results on Intersective Sets. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory. Springer Proceedings in Mathematics & Statistics, vol 101. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1601-6_9

Download citation

Publish with us

Policies and ethics