Skip to main content

Hot-Melt Extrusion for Solid Dispersions: Composition and Design Considerations

  • Chapter
  • First Online:
Amorphous Solid Dispersions

Abstract

Melt extrusion is a robust and efficient manufacturing platform that can be utilized for the production of amorphous dispersions. The development of these systems requires careful design of both formulation and process under a structured approach to ensure critical quality attributes are achieved and maintained. This chapter discusses specific aspects for selecting the manufacturing platform, developing and characterizing dispersions that are applicable to the compositional definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albano A, Desai D et al (2012) Pharmaceutical composition. United States Patent & Trademark Office US20130172375 A1

    Google Scholar 

  • Alie J, Menegotto J et al (2004) Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. J Pharm Sciences 93:218–233.

    Article  CAS  Google Scholar 

  • Andrews GP, Jones DS et al (2008) The manufacture and characterisation of hot-melt extruded enteric tablets. Eur J Pharm Biopharm 69(1):264–273

    Article  CAS  PubMed  Google Scholar 

  • Arkenau-Maric E, Bartholomaus J (2008) Process for the production of an abuse proofed dosage form, US 2008031197 A1, USPTO, pp 11.

    Google Scholar 

  • Avella M, Martuscelli E et al (1991) Crystallization behaviour of poly (ethylene oxide) from poly (3-hydroxybutyrate)/poly (ethylene oxide) blends: phase structuring, morphology and thermal behaviour. Elsevier 32:1647–1653

    CAS  Google Scholar 

  • Baird JA, Taylor LS (2012) Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev 64:396–421

    Article  CAS  PubMed  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, et al (2010). A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99(9):3787–3806

    CAS  PubMed  Google Scholar 

  • Bhardwaj SP, Suryanarayanan R (2012a) Molecular mobility as an effective predictor of the physical stability of amorphous trehalose. Mol Pharm 9(11):3209–3217

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj SP, Suryanarayanan R (2012b) Use of dielectric spectroscopy to monitor molecular mobility in glassy and supercooled trehalose. J Phys Chem B 116(38):11728–11736

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj SP, Arora KK et al (2013) Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol Pharm 10(2):694–700

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Suryanarayanan R (2009) Local mobility in amorphous pharmaceuticals—characterization and implications on stability. J Pharm Sci 98:2935–2953

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Pikal MJ (2008) Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97(4):1329–1349

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Rambhatla S et al (2007) Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. J Pharm Sci 96(5):1258–1269

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Shmeis R et al (2008) Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times. J Pharm Sci 97:455–472

    Article  CAS  PubMed  Google Scholar 

  • Booy M L (1978) Geometry of fully wiped twin-screw equipment. Polym Eng Sci 18(12):973–984

    Article  Google Scholar 

  • Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54(2):107–117

    Article  CAS  PubMed  Google Scholar 

  • Brouwer T, Todd DB et al (2002) Flow characteristics of screws and special mixing enhancers in a co-rotating twin screw extruder. Int Polym Process 17(1):26–32

    Article  CAS  Google Scholar 

  • Carpenter J, Katayama D et al (2009) Measurement of T g in lyophilized protein and protein excipient mixtures by dynamic mechanical analysis. J Therm Anal Calorim 95:881–884

    Article  CAS  Google Scholar 

  • Chiang P-C, Ran Y et al (2012) Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery. AAPS Pharm Sci Tech 13(2):713–722

    Article  CAS  Google Scholar 

  • Chokshi RJ, Sandhu HK et al (2005) Characterization of physico-mechanical properties of indomethacin and polymers to assess their suitability for hot-melt extrusion process as a means to manufacture solid dispersion/solution. J Pharm Sci 94(11):2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Correia NT, Alvarez C et al (2001) The beta–alpha branching in D-sorbitol as studied by thermally stimulated depolarization currents (TSDC). J Phys Chem B 105(24):5663–5669

    Article  CAS  Google Scholar 

  • Crowley MM, Zhang F et al (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33(9):909–926

    Article  CAS  PubMed  Google Scholar 

  • Dantuluri AKR, Amin A et al (2011) Role of alpha-relaxation on crystallization of amorphous celecoxib above T g probed by dielectric spectroscopy. Mol Pharm 8(3):814–822

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, Miller DA (2013) Formulation development of amorphous solid dispersions prepared by melt extrusion. In: Repka MA, Langley N, DiNunzio J (eds) Melt extrusion: materials, technology and drug product design. Springer, New York, pp 161–204

    Chapter  Google Scholar 

  • DiNunzio JC, Brough C et al (2010) Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm 74(2):340–351

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, Zhang F et al (2012) Melt extrusion. In: Williams III RO, Watts AB, Miller DA (eds) Formulating poorly water soluble drugs. Springer, New York, pp 311–362

    Google Scholar 

  • Doelker E (1993) Cellulose derivatives. In: Langer IR, Peppas N (eds) Biopolymers, vol 107. Springer, Berlin, pp 199–265

    Google Scholar 

  • Dong, Zedong, Chatterji, Ashish, Sandhu, Harpreet, Choi, Duk Soon, Chokshi, Hitesh, Shah, Navnit (2008) Evaluation of solid state properties of solid dispersions prepared by hot-melt extrusion and solvent co-precipitation Int J Pharm 355(1–2):141–149

    Google Scholar 

  • Ediger MD, Angell CA et al (1996) Supercooled liquids and glasses. J Phys Chem 100(31):13200–13212

    Article  CAS  Google Scholar 

  • Follonier N, Doelker E et al (1995) Various ways of modulating the release of diltiazem hydrochloride from hot-melt extruded sustained release pellets prepared using polymeric materials. J Control Release 36(3):243–250

    Article  CAS  Google Scholar 

  • Ghebremeskel A, Vemavarapu C et al (2007) Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm 328(2):119–129

    Article  CAS  PubMed  Google Scholar 

  • Gogos C, Liu H (2012) Laminar dispersive and distributive mixing with dissolution and applications to hot-melt extrusion. In: Douroumis D (ed) Hot-melt extrusion: pharmaceutical applications. Wiley, New York, pp 261–284

    Chapter  Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Comm 14:225–277

    Article  CAS  Google Scholar 

  • Griffith RM (1962) Fully developed flow in screw extruders, industrial & engineering chemistry fundamentals. Ind Eng Chem Fundam 1(3):180–187

    Article  CAS  Google Scholar 

  • Hartshorn CM, Lee YJ et al (2013) Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy. Anal Chem 85(17):8102–8111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hikima T, Adachi Y et al (1995) Determination of potentially homogeneous-nucleation-based crystallization in O-terphernyl and an interpretation of the nucleation-enhancement mechanism. Phys Rev B 52(6):3900–3908

    Article  CAS  Google Scholar 

  • Hughey JR, DiNunzio JC et al (2010) Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS Pharm Sci Tech 11(2):760–774

    Article  CAS  Google Scholar 

  • Ishida H, Wu T et al (2007) Sudden rise of crystal growth rate of nifedipine near T g without and with polyvinylpyrrolidone. J Pharm Sci 96(5):1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Amano T et al (2002) Flow patterns and mixing mechanisms in the screw mixing element of a co-rotating twin-screw extruder. Polym Eng Sci 42(5):925–939

    Article  CAS  Google Scholar 

  • Karabanova LV, Boiteux G et al (2008) Phase separation in the polyurethane/poly (2-hydroxyethyl methacrylate) semi-interpenetrating polymer networks synthesized by different ways. Polym Eng Sci 48(3):588–597

    Article  CAS  Google Scholar 

  • Karwe MV, Godavarti S (1997) Accurate measurement of extrudate temperature and heat loss on a twin-screw extruder. J Food Sci 62(2):367–372

    Article  CAS  Google Scholar 

  • Keen JM, Martin C et al (2013) Investigation of process temperature and screw speed on properties of a pharmaceutical solid dispersion using corotating and counter-rotating twin-screw extruders. J Pharm Pharmacol 66(2):204–217

    Article  PubMed  Google Scholar 

  • Kestur US, Wanapun D et al (2012) Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders. J Pharm Sci 101:4201–4213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohlgrüber K, Bierdel M (2008) Co-rotating twin-screw extruders: fundamentals, technology, and applications. Carl Hanser Publishers, Cincinnati

    Google Scholar 

  • Lamm MS, Simpson A, McNevin M, Frankenfeld C, Nay R, Variankaval N (2012) Probing the effect of drug loading and humidity on the mechanical properties of solid dispersions with nanoindentation: antiplasticization of a polymer by a drug molecule. Mol Pharm 9(11):3396–3402

    Article  CAS  PubMed  Google Scholar 

  • Lauer ME, Grassmann O et al (2011) Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions. Pharm Res 28:572–584

    Google Scholar 

  • Lauer ME, Siam M et al (2013) Rapid assessment of homogeneity and stability of amorphous solid dispersions by atomic force microscopy—from bench to batch. Pharm Res 30(8):2012–2022

    Article  Google Scholar 

  • Liu H, Wang P et al (2010) Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit® E PO solid dispersions. Int J Pharm 383(1–2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang X et al (2012) Miscibility studies of indomethacin and Eudragit® E PO by thermal, rheological, and spectroscopic analysis. J Pharm Sci 101:2204–2212

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Zografi G (1998) Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP, vol 15. Springer, pp 1202–1206

    Google Scholar 

  • Mahieu A, Willart J-F et al (2013a) A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm 10(2):560–566

    Article  CAS  PubMed  Google Scholar 

  • Mahieu A, Willart J-F et al (2013b) On the polymorphism of griseofulvin: identification of two additional polymorphs. J Pharm Sci 102:462–468

    Article  CAS  PubMed  Google Scholar 

  • Marsac PJ, Li T et al (2009) Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters, vol 26. Springer, pp 139–151

    Google Scholar 

  • Marsac P J, Rumondor ACF et al (2010) Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly (vinyl pyrrolidine). J Pharm Sci 99(1):169–185

    Article  CAS  PubMed  Google Scholar 

  • Marsac PJ, Shamblin SL et al (2006) Theoretical and practical approaches for prediction of drug: polymer miscibility and solubility. Pharm Res 23:2417–2426

    Article  CAS  PubMed  Google Scholar 

  • Marsac PJ, Taylor LS, Hanmi X, Lisa B, Zhen L, Hang L (2012) A novel method for accessing the enthalpy of mixing active pharmaceutical ingredients with polymers. American Association for Pharmaceutical Scientists National Meeting, Chicago

    Google Scholar 

  • McCrum NG, Buckley CP et al (1997) Principles of polymer engineering. Oxford University Press, New York

    Google Scholar 

  • Nalawade SP, Picchioni F et al (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31(1):19–43

    Article  CAS  Google Scholar 

  • Newman A, Engers D et al (2008) Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci 97:4840–4856

    Article  CAS  PubMed  Google Scholar 

  • Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  • Oshlack B, Wright C et al (2001) Tamper-resistant oral opioid agonist formulations. United States 36

    Google Scholar 

  • Patterson JE, James MB et al (2005) The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds. J Pharm Sci 94(9):1998–2012

    Article  CAS  PubMed  Google Scholar 

  • Patterson JE, James MB et al (2007). Preparation of glass solutions of three poorly water soluble drugs by spray drying, melt extrusion and ball milling. Int J Pharm 336(1):22–34

    Article  CAS  PubMed  Google Scholar 

  • Patterson JE, James MB et al (2008) Melt extrusion and spray drying of carbamazepine and dipyridamole with polyvinylpyrrolidone/vinyl acetate copolymers. Drug Dev Ind Pharm 34(1):95–106

    Article  CAS  PubMed  Google Scholar 

  • Pham TN, Watson SA et al (2010) Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T 1 relaxation measurements, vol 7. ACS Publications, New York, pp 1667–1691

    Google Scholar 

  • Pikal MJ, Dellerman KM (1989) Stability testing of pharmaceuticals by high-sensitivity isothermal calorimetry at 25 C: cephalosporins in the solid and aqueous solution states. Int J Pharm 50:233–252

    Article  CAS  Google Scholar 

  • Power G, Vij JK et al (2007) Dielectric relaxation and crystallization of nanophase separated 1-propanol-isoamylbromide mixture. J Chem Phys 127:094507

    Article  CAS  PubMed  Google Scholar 

  • Price R, Young PM (2004) Visualization of the crystallization of lactose from the amorphous state. J Pharm Sci 93:155–164

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Huang J et al (2010) Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm 395:232–235

    Article  CAS  PubMed  Google Scholar 

  • Rauwendaal C (1998) Polymer mixing: a self study guide. Hanser Gardner Publications, Cincinnati

    Google Scholar 

  • Rauwendaal C (ed) (2002) Polymer extrusion, 4th edn. Hanser Gardner Publications, Cincinnati

    Google Scholar 

  • Rumondor ACF, Marsac PJ et al (2009) Phase behavior of poly (vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm 6:1492–1505

    Article  CAS  PubMed  Google Scholar 

  • Rumondor ACF, Taylor LS (2010) Application of partial least-squares (PLS) modeling in quantifying drug crystallinity in amorphous solid dispersions. Int J Pharm 398:155–160

    Article  CAS  PubMed  Google Scholar 

  • Rumondor ACF, Wikström HK et al (2011) Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture, vol 12. Springer, Berlin, pp 1209–1219

    Google Scholar 

  • Schenck L, Troup GM et al (2011) Achieving a hot melt extrusion design space for the production of solid solutions. Chem Eng Pharm Ind 14(3):1034–1044

    Google Scholar 

  • Schilling S, Shah N et al (2007) Citric acid as a solid-state plasticizer for Eudragit RS PO. J Pharm Pharmacol 59(11):1493–1500

    Article  PubMed  Google Scholar 

  • Shah B, Kakumanu VK et al (2006) Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci 95:1641–1665

    Article  CAS  PubMed  Google Scholar 

  • Shamblin SL, Hancock BC et al (2006) Coupling between chemical reactivity and structural relaxation in pharmaceutical glasses, vol 23. Springer, Berlin, pp 2254–2268

    Google Scholar 

  • Shmeis RA, Wang Z et al (2004a) A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, part I: a comparative analysis by thermally stimulated depolarization current and differential scanning calorimetry, vol 21. Springer, Berlin, pp 2025–2030

    Google Scholar 

  • Shmeis RA, Wang Z et al (2004b) A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, part II: molecular mobility and activation thermodynamic parameters, vol 21. Springer, Berlin, pp 2031–2039

    Google Scholar 

  • Sinclair W, Leane M et al (2011) Physical stability and recrystallization kinetics of amorphous ibipinabant drug product by Fourier transform Raman spectroscopy. J Pharm Sci 100:4687–4699

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Gamlath S et al (2007) Nutritional aspects of food extrusion: a review. Int J Food Sci Technol 42(8):916–929

    Article  CAS  Google Scholar 

  • Strachan CJ, Windbergs M et al (2011) Pharmaceutical applications of non-linear imaging. Int J Pharm 417:163–172

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xi H et al (2008a) Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J Phys Chem B 112(18):5594–5601

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xi H et al (2008b) Diffusionless crystal growth from glass has precursor in equilibrium liquid. J Phys Chem B 112(3):661–664

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xi H, Ediger MD, Richert R, Yu L (2009) Diffusion-Controlled and “Diffusionless” Crystal Growth near the Glass Transition Temperature: Relation between Liquid Dynamics and Growth Kinetics of Seven ROY Polymorphs. J Chem Phys, pp 131

    Google Scholar 

  • Sun Y, Tao J et al (2010) Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci 99(9):4023–4031

    CAS  PubMed  Google Scholar 

  • Suzuki H, Sunada H (1998) Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Int J Pharm 303(1–2):54–61

    Google Scholar 

  • Szczepanski CR, Pfeifer CS et al (2012) A new approach to network heterogeneity: polymerization induced phase separation in photo-initiated, free-radical methacrylic systems. Polymer 53:4694–4701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tadmor Z, Gogos CG (2006) Principles of polymer processing. Wiley-Interscience, Hoboken

    Google Scholar 

  • Tao J, Sun Y et al (2009) Solubility of small-molecule crystals in polymers: d-Mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res 26(4):855–864

    Article  CAS  PubMed  Google Scholar 

  • Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Booth J et al (2009) Construction of drug-polymer thermodynamic phase diagrams using Flory–Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm 10(1):236–248

    Article  Google Scholar 

  • Todd DB (1998) Introduction to compounding. Polymer Processing Institute Books from Hanser Publishers, D. B. Todd. Hanser/ Gardner Publications, Inc., Cincinnati, pp 1–12

    Google Scholar 

  • Toth SJ, Madden JT, Taylor LS, Marsac P, Simpson GJ (2012) Selective Imaging of Active Pharmaceutical Ingredients in Powdered Blends with Common Excipients Utilizing Two-Photon Excited Ultraviolet-Fluorescence and Ultraviolet-Second Order Nonlinear Optical Imaging of Chiral Crystals Anal Chem 84(14):5869–5875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verreck G, Decorte A et al (2006a) The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers. J Supercrit Fluids 38(3):383–391

    Article  CAS  Google Scholar 

  • Verreck G, Decorte A et al (2006b) Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm 327(1–2):45–50

    Article  CAS  PubMed  Google Scholar 

  • Verreck G, Decorte A, Heymans K, Adriaensen J, Liu D, Tomasko DL, Arien A, Peeters J, Rombaut P, Van den Mooter G, Brewster ME (2007) The effect of supercritical CO2 as a reversible plasticizer and foaming agent on the hot stage extrusion of itraconazole with EC 20 cps. J Supercrit Fluids 40(1):153–162

    Article  CAS  Google Scholar 

  • Verreck G, Six K et al (2003) Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion—part I. Int J Pharm 251(1–2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Vyazovkin S, Dranca I (2007) Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem 111:7283–7287

    Article  CAS  Google Scholar 

  • Work WJ, Hess KHM et al (2004) Definitions of terms related to polymer blends, composites, and multiphase polymeric materials. Pure Appl Chem 76(11):1985–2007

    Article  CAS  Google Scholar 

  • Wanapun D, Kestur US et al (2010) Selective detection and quantitation of organic molecule crystallization by second harmonic generation microscopy. Anal Chem 82:5425–5432

    Article  CAS  PubMed  Google Scholar 

  • Wanapun D, Kestur US et al (2011) Single particle nonlinear optical imaging of trace crystallinity in an organic powder. Anal Chem 83:4745–4751

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Michoel A et al (2005) Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm 303(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Yu L (2006) Origin of enhanced crystal growth kinetics near T g probed with indomethacin polymorphs. J Phys Chem B 110(32):15694–15699

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Wang P et al (2011) Determination of acetaminophen’s solubility in poly(ethylene oxide) by rheological, thermal and microscopic methods. Int J Pharm 403(1–2):83–89

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Harris MT et al (2013) Modification of crystallization behavior in drug/polyethylene glycol solid dispersions. Mol Pharm 9:546–553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James DiNunzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Brown, C. et al. (2014). Hot-Melt Extrusion for Solid Dispersions: Composition and Design Considerations. In: Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A. (eds) Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1598-9_6

Download citation

Publish with us

Policies and ethics