Skip to main content

Supersolubilization by Using Nonsalt-Forming Acid-Base Interaction

  • Chapter
  • First Online:
Amorphous Solid Dispersions

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

A novel approach of greatly increasing the solubility of basic drugs by interacting them with weak acids has been described. In this method, which is termed supersolubilization, it is essential that the acids used are highly water-soluble and would not normally form salts with the basic drugs used. The aqueous solubility of a model drug, haloperidol, which has an intrinsic solubility of 2.5 µg/mL in water, could be increased to > 300 mg/g of solution by using such weak acids as citric acid, malic acid, and tartaric acid. When the concentrated aqueous solutions of haloperidol in the presence of acids were dried, they formed amorphous solid dispersions, where the drug loads could be as high as 40–50 % w/w. The solid dispersions were physically stable as the drug did not convert to the crystalline form during stability testing. It was, however, observed that, when the drug load was very high, the solid dispersions could exist as the viscous semisolid mass, and might not be processable into tablets. Such materials could be converted into free-flowing and tabletable powders by adsorbing them onto a metasilicate, such as Neusilin® US2. The method is also applicable to supersolubilizing weakly acidic drugs in acidic media by using such weak bases as lysine, arginine, etc., and subsequently converting them into solid dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badawy SIF, Hussain MA (2007) Microenvironmental pH modulation in solid dosage forms. J Pharm Sci 96:948–959

    Article  CAS  PubMed  Google Scholar 

  • Badawy SIF, Gray DB, Zhao F, Sun D, Schuster AE, Hussain MA (2006) Formulation of solid dosage forms to overcome gastric pH interaction of the factor Xa inhibitor, BMS-561389. Pharm Res 23:989–996

    Article  CAS  PubMed  Google Scholar 

  • Bi M, Kyad A, Alvarez-Nunez F, Alvarez F (2011a) Enhancing and sustaining AMG 009 dissolution from a bilayer oral solid dosage form via microenvironmental pH modulation and supersaturation. AAPS Pharm Sci Tech 12:1401–1406

    Article  CAS  Google Scholar 

  • Bi M, Kyad A, Kiang Y, Alvarez-Nunez F, Alvarez F (2011b) Enhancing and sustaining AMG 009 dissolution from a matrix via microenvironmental pH modulation and supersaturation. AAPS Pharm Sci Tech 12:1157–1162

    Article  CAS  Google Scholar 

  • Chiou WL, Riegelman S (1969) Preparation and dissolution characteristics of several fast‐release solid dispersions of griseofulvin. J Pharm Sci 58:1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Doherty C, York P (1989) Microenvironmental pH control of drug dissolution. Int J Pharm 50:223–232

    Article  CAS  Google Scholar 

  • Gohel MC, Patel TP, Bariya SH (2003) Studies in preparation and evaluation of pH-independent sustained-release matrix tablets of verapamil HCl using directly compressible Eudragits. Pharm Dev Technol 8:323–333

    Article  CAS  PubMed  Google Scholar 

  • Gumaste SG, Dalrymple DM, Serajuddin AT (2013a) Development of solid SEDDS, V: Compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto Neusilin® US2. Pharm Res 30:3186–3199

    Article  CAS  PubMed Central  Google Scholar 

  • Gumaste SG, Pawlak SA, Dalrymple DM, Nider CJ, Trombetta LD, Serajuddin AT (2013b) Development of solid SEDDS, IV: Effect of adsorbed lipid and surfactant on tableting properties and surface structures of different silicates. Pharm Res 30:3170–3185

    Article  CAS  PubMed Central  Google Scholar 

  • Kadoya S, Izutsu K, Yonemochi E, Terada K, Yomota C, Kawanishi T (2008) Glass-state amorphous salt solids formed by freeze-drying of amines and hydroxy carboxylic acids: effect of hydrogen-bonding and electrostatic interactions. Chem Pharm Bull 56:821–826

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Oksanen DA, Massefski Jr W, Blake JF, Duffy EM, Chrunyk B (1998) Inclusion complexation of ziprasidone mesylate with β‐cyclodextrin sulfobutyl ether. J Pharm Sci 87:1560–1567

    Article  CAS  PubMed  Google Scholar 

  • Kramer S, Flynn G (1972) Solubility of organic hydrochlorides. J Pharm Sci 61:1896–1904

    Article  CAS  PubMed  Google Scholar 

  • Kranz H, Guthmann C, Wagner T, Lipp R, Reinhard J (2005) Development of a single unit extended release formulation for ZK 811 752, a weakly basic drug. Eur J Pharm Sci 26:47–53

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wong S, Sethia S, Almoazen H, Joshi YM, Serajuddin AT (2005a). Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res 22:628–635

    Article  CAS  PubMed  Google Scholar 

  • Li S, Doyle P, Metz S, Royce AE, Serajuddin A (2005b) Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J Pharm Sci 94:2224–2231

    Article  CAS  PubMed  Google Scholar 

  • Lim H, Balakrishnan P, Oh DH, Joe KH, Kim YR, Hwang DH et al (2010) Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: physicochemical characterization and pharmacokinetics in beagle dogs. Int J Pharm 397:225–230

    Article  CAS  PubMed  Google Scholar 

  • Marasini N, Tran TH, Poudel BK, Cho HJ, Choi YK, Chi S et al (2013) Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique. Int J Pharm 441:424–432

    Article  CAS  PubMed  Google Scholar 

  • Naonori K, Hiroshi Y, Ken I, Katsumi M (1991) A new type of a pH-independent controlled release tablet. Int J Pharm 68:255–264

    Article  Google Scholar 

  • Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–940

    Article  Google Scholar 

  • Phuong HT, Tran TT, Lee SA, Nho VH, Chi S, Lee B (2011) Roles of MgO release from polyethylene glycol 6000-based solid dispersions on microenvironmental pH, enhanced dissolution and reduced gastrointestinal damage of telmisartan. Arch Pharm Res 34:747–755

    Article  Google Scholar 

  • Pudipeddi M, Zannou EA, Vasanthavada M, Dontabhaktuni A, Royce AE, Joshi YM et al (2008) Measurement of surface pH of pharmaceutical solids: a critical evaluation of indicator dye‐sorption method and its comparison with slurry pH method. J Pharm Sci 97:1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Rao VM, Engh K, Qiu Y (2003) Design of pH-independent controlled release matrix tablets for acidic drugs. Int J Pharm 252:81–86

    Article  CAS  PubMed  Google Scholar 

  • Schilling SU, Bruce CD, Shah NH, Malick AW, McGinity JW (2008) Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets. Int J Pharm 361:158–168

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin A (1999) Solid dispersion of poorly water‐soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin A (2007) Salt formation to improve drug solubility. Adv Drug Deliv Rev 59:603–616

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin A, Jarowski CI (1985a) Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical bases and their hydrochloride salts I: phenazopyridine. J Pharm Sci 74:142–147

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin A, Jarowski CI (1985b) Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts II: salicylic acid, theophylline, and benzoic acid. J Pharm Sci 74:148–154

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin ATM, Jarowski CI (1993) Influence of pH on release of phenytoin sodium from slow-release dosage forms. J Pharm Sci 82:306–310

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin ATM, Pudipeddi M (2002) Solubility and dissolution of weak acids, bases, and salts. In: Stahl PH, Wermuth CG (eds) IUPAC handbook of pharmaceutical salts: properties, selection, and use. Verlag Helvetica Chimica Acta, Zurich, pp 19–39

    Google Scholar 

  • Serajuddin A, Ranadive SA, Mahoney EM (1991) Relative lipophilicities, solubilities, and structure‐pharmacological considerations of 3‐hydroxy‐3‐methylglutaryl‐coenzyme a (HMG-COA) reductase inhibitors pravastatin, lovastatin, mevastatin, and simvastatin. J Pharm Sci 80:830–834

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Serajuddin A (2014) Personal communication. (Submitted to Journal of Excipients and Food Chemicals, an Open Access journal)

    Google Scholar 

  • Siepe S, Herrmann W, Borchert H, Lueckel B, Kramer A, Ries A et al (2006) Microenvironmental pH and microviscosity inside pH-controlled matrix tablets: an EPR imaging study. J Control Release 112:72–78

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parikh T, Sandhu HK, Shah NH, Malick AW, Singhal D et al (2013) Supersolubilization and amorphization of a model basic drug, haloperidol, by interaction with weak acids. Pharm Res 30:1561–1573

    Article  CAS  PubMed  Google Scholar 

  • Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche M et al (2005) Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci 24:179–186

    Article  CAS  PubMed  Google Scholar 

  • Streubel A, Siepmann J, Dashevsky A, Bodmeier R (2000) pH-independent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J Control Rel 67:101–110

    Article  CAS  Google Scholar 

  • Tatavarti AS, Hoag SW (2006) Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J Pharm Sci 95:1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Tatavarti AS, Mehta KA, Augsburger LL, Hoag SW (2004) Influence of methacrylic and acrylic acid polymers on the release performance of weakly basic drugs from sustained release hydrophilic matrices. J Pharm Sci 93:2319–2331

    Article  CAS  PubMed  Google Scholar 

  • Thoma K, Zimmer T (1990) Retardation of weakly basic drugs with diffusion tablets. Int J Pharm 58:197–202

    Article  CAS  Google Scholar 

  • Thombre AG, Herbig SM, Alderman JA (2011) Improved ziprasidone formulations with enhanced bioavailability in the fasted state and a reduced food effect. Pharm Res 28:3159–170

    Article  CAS  PubMed  Google Scholar 

  • Timko RJ, Lordi NG (1979) Thermal characterization of citric acid solid dispersions with benzoic acid and phenobarbital. J Pharm Sci 68:601–605

    Article  CAS  PubMed  Google Scholar 

  • Tran TT, Tran PH, Lee B (2009) Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 72:83–90

    Article  CAS  PubMed  Google Scholar 

  • Tran PH, Tran TT, Lee K, Kim D, Lee B (2010a) Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv 7:647–661

    Article  CAS  PubMed  Google Scholar 

  • Tran TT, Tran PH, Choi H, Han H, Lee B (2010b) The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 384:60–66

    Article  CAS  PubMed  Google Scholar 

  • Tran PH, Tran TT, Park J, Min DH, Choi H, Han H et al (2011) Investigation of physicochemical factors affecting the stability of a pH-modulated solid dispersion and a tablet during storage. Int J Pharm 414:48–55

    Article  CAS  PubMed  Google Scholar 

  • Vasanthavada M, Tong W, Serajuddin ATM (2008) Development of solid dispersion for poorly water-soluble drugs. In: Liu R (ed) Water-insoluble drug formulations, 2nd edn. Informa Healthcare, New York, pp 149–184

    Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJ (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499

    Article  PubMed  Google Scholar 

  • Zannou EA, Ji Q, Joshi YM, Serajuddin A (2007) Stabilization of the maleate salt of a basic drug by adjustment of microenvironmental pH in solid dosage form. Int J Pharm 337:210–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu T. M. Serajuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Shah, A., Serajuddin, A. (2014). Supersolubilization by Using Nonsalt-Forming Acid-Base Interaction. In: Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A. (eds) Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1598-9_20

Download citation

Publish with us

Policies and ethics