Skip to main content

Theoretical Considerations in Developing Amorphous Solid Dispersions

  • Chapter
  • First Online:
Amorphous Solid Dispersions

Abstract

Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how much solubility improvement, and hence increase in bioavailability, can be expected, and what forms of solid dispersion have been developed in the past. In this chapter, we therefore initially define the various forms of solid dispersions, and then go on to discuss properties of pure drugs with respect to their glass-forming ability and glass stability. In the main parts of this chapter, we review theoretical approaches to determine amorphous drug polymer miscibility and crystalline drug polymer solubility, as a prerequisite to develop amorphous solid dispersions (glass solutions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamska K, Bellinghausen R, Voelkel A (2008) New procedure for the determination of Hansen solubility parameters by means of inverse gas chromatography. J Chromatogr A 1195(1–2):146–149

    CAS  PubMed  Google Scholar 

  • Alonzo D, Zhang GZ, Zhou D, Gao Y, Taylor L (2010) Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 27(4):608–618

    CAS  PubMed  Google Scholar 

  • Andronis V, Zografi G (1997) Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm Res 14(4):410–414

    CAS  PubMed  Google Scholar 

  • Avramov I, Zanotto ED, Prado MO (2003) Glass-forming ability versus stability of silicate glasses. II. Theoretical demonstration. J Non-Cryst Solids 320(1–3):9–20

    CAS  Google Scholar 

  • Ayenew Z, Paudel A, Van den Mooter G (2012) Can compression induce demixing in amorphous solid dispersions? A case study of naproxen-PVP K25. Eur J Pharm Biopharm 81(1):207–213

    CAS  PubMed  Google Scholar 

  • Babu NJ, Nangia A (2011) Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Design 11(7):2662–2679

    CAS  Google Scholar 

  • Baird JA, Taylor LS (2012) Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev 64(5):396–421

    CAS  PubMed  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99(9):3787–3806

    CAS  PubMed  Google Scholar 

  • Barandiaran JM, Colmenero J (1981) Continuous cooling approximation for the formation of a glass. J Non-Cryst Solids 46(3):277–287

    CAS  Google Scholar 

  • Bellantone RA, Patel P, Sandhu H, Choi DS, Singhal D, Chokshi H, Malick AW, Shah N (2012) A method to predict the equilibrium solubility of drugs in solid polymers near room temperature using thermal analysis. J Pharm Sci 101(12):4549–4558

    CAS  PubMed  Google Scholar 

  • Bhugra C, Pikal MJ (2008) Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97(4):1329–1349

    CAS  PubMed  Google Scholar 

  • Boersen N, Lee T, Hui H-W (2012) Development of preclinical formulations for toxicology studies. In: Faqi AS (ed) A comprehensive guide to toxicology in preclinical drug development. Academic Press, London, pp 69–86

    Google Scholar 

  • Bøtker JP, Karmwar P, Strachan CJ, Cornett C, Tian F, Zujovic Z, Rantanen J, Rades T (2011) Assessmentof crystalline disorder in cryo-milled samples of indomethacin using atomic pair-wise distribution functions. Int J Pharm 417(1–2):112–119

    PubMed  Google Scholar 

  • Branham ML, Moyo T, Govender T (2012) Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. Eur J Pharm Biopharm 80(1):194–202

    CAS  PubMed  Google Scholar 

  • Cabral AA, Cardoso AAD, Zanotto ED (2003) Glass-forming ability versus stability of silicate glasses. I. Experimental test. J Non-Cryst Solids 320(1–3):1–8

    CAS  Google Scholar 

  • Caron V, Tajber L, Corrigan OI, Healy AM (2011) A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Mol Pharm 8(2):532–542

    CAS  PubMed  Google Scholar 

  • Chan HK, Doelker E (1985) Polymorphic transformation of some drugs under compression. Drug Dev Ind Pharm 11(2–3):315–332

    CAS  Google Scholar 

  • Chiou WL, Riegelman S (1969) Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J Pharm Sci 58(12):1505–1510

    CAS  PubMed  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302

    CAS  PubMed  Google Scholar 

  • Coleman MM, Painter PC (1995) Hydrogen-bonded polymer blends. Prog Polym Sci 20(1):1–59

    CAS  Google Scholar 

  • Couchman PR, Karasz FE (1978) Classical thermodynamic discussion of effect of composition on glass-transition temperatures. Macromolecules 11(1):117–119

    CAS  Google Scholar 

  • Craig DQM, Royall PG, Kett VL, Hopton ML (1999) The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm 179(2):179–207

    CAS  PubMed  Google Scholar 

  • Cui Y (2011) Using molecular simulations to probe pharmaceutical materials. J Pharm Sci 100(6):2000–2019

    CAS  PubMed  Google Scholar 

  • Di Martino P, Palmieri GF, Martelli S (2000) Molecular mobility of the paracetamol amorphous form. Chem Pharm Bull 48(8):1105–1108

    CAS  PubMed  Google Scholar 

  • Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K (2013) Preparation of carbamazepine-Soluplus ® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 84(1):228–237

    CAS  PubMed  Google Scholar 

  • Duan RG, Liang KM, Gu SR (1998) Effect of changing TiO2 content on structure and crystallization of CaO-Al2O3-SiO2 system glasses. J Eur Ceram Soc 18(12):1729–1735

    CAS  Google Scholar 

  • Egawa H, Maeda S, Yonemochi E, Oguchi T, Yamamoto K, Nakai Y (1992) Solubility parameter and dissolution behavior of cefalexin powders with different crystallinity. Chem Pharm Bull 40(3):819–820

    CAS  Google Scholar 

  • Fan CF, Olafson BD, Blanco M, Hsu SL (1992) Application of molecular simulation to derive phase-diagrams of binary-mixtures. Macromolecules 25(14):3667–3676

    CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Forster A, Hempenstall J, Tucker I, Rades T (2001) Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 226(1–2):147–161

    CAS  PubMed  Google Scholar 

  • Goldberg AH, Gibaldi M, Kanig JL (1965) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. I. Theoretical considerations and discussion of the literature. J Pharm Sci 54(8):1145–1148

    CAS  PubMed  Google Scholar 

  • Graeser KA, Patterson JE, Rades T (2009a) Applying thermodynamic and kinetic parameters to predict the physical stability of two differently prepared amorphous forms of simvastatin. Curr Drug Deliv 6:374–382

    CAS  PubMed  Google Scholar 

  • Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T (2009b) Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci 37(3–4):492–498

    CAS  PubMed  Google Scholar 

  • Graeser KA, Patterson JE, Zeitler JA, Rades T (2010) The role of configurational entropy in amorphous systems. Pharmaceutics 2:224–244

    CAS  PubMed Central  Google Scholar 

  • Greco K, Bogner R (2010) Crystallization of amorphous indomethacin during dissolution: effect of processing and annealing. Mol Pharm 7(5):1406–1418

    CAS  PubMed  Google Scholar 

  • Greenhalgh DJ, Williams AC, Timmins P, York P (1999) Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 88(11):1182–1190

    CAS  PubMed  Google Scholar 

  • Gupta P, Bansal AK (2005) Molecular interactions in celecoxib-PVP-meglumine amorphous system. J Pharm Pharmacol 57(3):303–310

    CAS  PubMed  Google Scholar 

  • Gupta J, Nunes C, Vyas S, Jonnalagadda S (2011) Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B 115(9):2014–2023

    CAS  PubMed  Google Scholar 

  • Gutzow IS, Schmelzer JWP (2013) The vitreous state: thermodynamics, structure, rheology, and crystallization. Springer, Berlin

    Google Scholar 

  • Haddadin R, Qian F, Desikan S, Hussain M, Smith RL (2009) Estimation of drug solubility in polymers via differential scanning calorimetry and utilization of the fox equation. Pharm Dev Technol 14(1):18–26

    CAS  PubMed  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404

    CAS  PubMed  Google Scholar 

  • Hancock BC, Zografi G (1994) The relationship between the glass-transition temperature and the water-content of amorphous pharmaceutical solids. Pharm Res 11(4):471–477

    CAS  PubMed  Google Scholar 

  • Hancock BC, Zograf G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12

    CAS  PubMed  Google Scholar 

  • Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass-transition temperatures. Pharm Res 12(6):799–806

    CAS  PubMed  Google Scholar 

  • Hancock BC, York P, Rowe RC (1997) The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm 148(1):1–21

    CAS  Google Scholar 

  • Hoei Y, Yamaura K, Matsuzawa S (1992) A lattice treatment of crystalline solvent-amorphous polymer mixtures on melting-point depression. J Phys Chem 96(26):10584–10586

    CAS  Google Scholar 

  • Hrubý A (1972) Evaluation of glass-forming tendency by means of DTA. Czechoslov J Phys B 22(11):1187–1193

    Google Scholar 

  • Huang W, Ray CS, Day DE (1986) Dependence of the critical cooling rate for lithium silicate glass on nucleating-agents. J Non-Cryst Solids 86(1–2):204–212

    CAS  Google Scholar 

  • Huynh L, Grant J, Leroux JC, Delmas P, Allen C (2008) Predicting the solubility of the anti-cancer agent docetaxel in small molecule excipients using computational methods. Pharm Res 25(1):147–157

    CAS  PubMed  Google Scholar 

  • Imaizumi H, Nambu N, Nagai T (1980) Pharmaceutical interaction in dosage forms and processing.18. Stability and several physical-properties of amorphous and crystalline forms of indomethacin. Chem Pharm Bull 28(9):2565–2569

    CAS  PubMed  Google Scholar 

  • Ivanisevic I, Bates S, Chen P (2009) Novel methods for the assessment of miscibility of amorphous drug-polymer dispersions. J Pharm Sci 98(9):3373–3386

    CAS  PubMed  Google Scholar 

  • Janssens S, Van den Mooter G (2009) Review: physical chemistry of solid dispersions. J Pharm Pharmacol 61(12):1571–1586

    CAS  PubMed  Google Scholar 

  • Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van Den Mooter G (2010) Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and eudragit E100. Pharm Res 27(5):775–785

    CAS  PubMed  Google Scholar 

  • Jasti BR, Berner B, Zhou SL, Li X (2004) A novel method for determination of drug solubility in polymeric matrices. J Pharm Sci 93(8):2135–2141

    CAS  PubMed  Google Scholar 

  • Karmwar P, Boetker JP, Graeser KA, Strachan CJ, Rantanen J, Rades T (2011a) Investigations on the effect of different cooling rates on the stability of amorphous indomethacin. Eur J Pharm Sci 44(3):341–350

    CAS  PubMed  Google Scholar 

  • Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T (2011b) Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int J Pharm 417(1–2):94–100

    CAS  PubMed  Google Scholar 

  • Karunakaran K (1981) Theoretical prediction of eutectic temperature and composition. J Solut Chem 10(6):431–435

    CAS  Google Scholar 

  • Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43(2):219–256

    CAS  Google Scholar 

  • Kawakami K, Pikal MJ (2005) Calorimetric investigation of the structural relaxation of amorphous materials: evaluating validity of the methodologies. J Pharm Sci 94(5):948–965

    CAS  PubMed  Google Scholar 

  • Ke P, Hasegawa S, Al-Obaidi H, Buckton G (2012) Investigation of preparation methods on surface/bulk structural relaxation and glass fragility of amorphous solid dispersions. Int J Pharm 422(1–2):170–178

    CAS  PubMed  Google Scholar 

  • Khachaturyan AG (1978) Ordering in substitutional and interstitial solid-solutions. Prog Mater Sci 22(1–2):1–150

    CAS  Google Scholar 

  • Kogermann K, Penkina A, Predbannikova K, Jeeger K, Veski P, Rantanen J, Naelapää K (2013) Dissolution testing of amorphous solid dispersions. Int J Pharm 444(1–2):40–46

    CAS  PubMed  Google Scholar 

  • Konno H, Taylor LS (2008) Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res 25(4):969–978

    CAS  PubMed  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60

    CAS  PubMed  Google Scholar 

  • Li JJ, Chiappetta D (2008) An investigation of the thermodynamic miscibility between VeTPGS and polymers. Int J Pharm 350(1–2):212–219

    CAS  PubMed  Google Scholar 

  • Lin DX, Huang YB (2010) A thermal analysis method to predict the complete phase diagram of drug-polymer solid dispersions. Int J Pharm 399(1–2):109–115

    CAS  PubMed  Google Scholar 

  • Liu JS, Rigsbee DR, Stotz C, Pikal MJ (2002) Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J Pharm Sci 91(8):1853–1862

    CAS  PubMed  Google Scholar 

  • Liu HJ, Zhang XY, Suwardie H, Wang P, Gogos CG (2012) Miscibility studies of indomethacin and Eudragit ® E PO by thermal, rheological, and spectroscopic analysis. J Pharm Sci 101(6):2204–2212

    CAS  PubMed  Google Scholar 

  • Loftsson T, Fridriksdottir H, Gudmundsdottir K (1996) The effect of water-soluble polymers on aqueous, solubility of drugs. Int J Pharm 127(2):293–296

    CAS  Google Scholar 

  • Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50(13):3501–3512

    CAS  Google Scholar 

  • Lu ZP, Liu CT (2003) Glass formation criterion for various glass-forming systems. Phys Rev Lett 91 (11)

    Google Scholar 

  • Lu Q, Zografi G (1998) Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res 15(8):1202–1206

    CAS  PubMed  Google Scholar 

  • Ma X, Taw J, Chiang C-M (1996) Control of drug crystallization in transdermal matrix system. Int J Pharm 142(1):115–119

    CAS  Google Scholar 

  • Mahieu A, Willart JF, Dudognon E, Daneìde F, Descamps M (2013) A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm 10(2):560–566

    CAS  PubMed  Google Scholar 

  • Mao C, Chamarthy SP, Byrn SR, Pinal R (2006a) A calorimetric method to estimate molecular mobility of amorphous solids at relatively low temperatures. Pharm Res 23(10):2269–2276

    CAS  PubMed  Google Scholar 

  • Mao C, Chamarthy SP, Pinal R (2006b) Time-dependence of molecular mobility during structural relaxation and its impact on organic amorphous solids: an investigation based on a calorimetric approach. Pharm Res 23(8):1906–1917

    CAS  PubMed  Google Scholar 

  • Mao C, Chamarthy SP, Pinal R (2007) Calorimetric study and modeling of molecular mobility in amorphous organic pharmaceutical compounds using a modified Adam-Gibbs approach. J Phys Chem B 111(46):13243–13252

    CAS  PubMed  Google Scholar 

  • Marsac PJ, Konno H, Taylor LS (2006a) A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res 23(10):2306–2316

    CAS  PubMed  Google Scholar 

  • Marsac PJ, Shamblin SL, Taylor LS (2006b) Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res 23(10):2417–2426

    CAS  PubMed  Google Scholar 

  • Marsac PJ, Li T, Taylor LS (2009) Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 26(1):139–151

    CAS  PubMed  Google Scholar 

  • Marsac PJ, Rumondor ACF, Nivens DE, Kestur US, Stanciu L, Taylor LS (2010) Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J Pharm Sci 99(1):169–185

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Zografi G (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinylacetate) in relation to indomethacin crystallization. Pharm Res 16(11):1722–1728

    CAS  PubMed  Google Scholar 

  • Metatla N, Soldera A (2007) The Vogel-Fulcher-Tamman equation investigated by atomistic simulation with regard to the Adam-Gibbs model. Macromolecules 40(26):9680–9685

    CAS  Google Scholar 

  • Moore MD, Wildfong PLD (2009) Aqueous solubility enhancement through engineering of binary solid composites: pharmaceutical applications. J Pharm Innov 4(1):36–49

    Google Scholar 

  • Moore MD, Wildfong PLD (2011) Informatics calibration of a molecular descriptors database to predict solid dispersion potential of small molecule organic solids. Int J Pharm 418(2):217–226

    CAS  PubMed  Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2010a) Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci 99(3):1254–1264

    CAS  PubMed  Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2010b) Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res 27(12):2704–2714

    CAS  PubMed  Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2011) Solubility advantage of amorphous pharmaceuticals, part 3: is maximum solubility advantage experimentally attainable and sustainable? J Pharm Sci 100(10):4349–4356

    CAS  PubMed  Google Scholar 

  • Nair R, Nyamweya N, Gonen S, Martinez-Miranda LJ, Hoag SW (2001) Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm 225(1–2):83–96

    CAS  PubMed  Google Scholar 

  • Nascimento MLF, Souza LA, Ferreira EB, Zanotto ED (2005) Can glass stability parameters infer glass forming ability? J Non-Cryst Solids 351(40–42):3296–3308

    CAS  Google Scholar 

  • Newman A, Knipp G, Zografi G (2012) Assessing the performance of amorphous solid dispersions. J Pharm Sci 101(4):1355–1377

    CAS  PubMed  Google Scholar 

  • Nishi T, Wang TT (1975) Melting-point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride) poly(methyl methacrylate) mixtures. Macromolecules 8(6):909–915

    CAS  Google Scholar 

  • Onorato PIK, Uhlmann DR (1976) Nucleating heterogeneities and glass formation. J Non-Cryst Solids 22(2):367–378

    CAS  Google Scholar 

  • Ota R, Wakasugi T, Kawamura W, Tuchiya B, Fukunaga J (1995) Glass-formation and crystallization in Li2O-Na2O-K2O-SiO2. J Non-Cryst Solids 188(1–2):136–146

    CAS  Google Scholar 

  • Ozaki S, Kushida I, Yamashita T, Hasebe T, Shirai O, Kano K (2012) Evaluation of drug supersaturation by thermodynamic and kinetic approaches for the prediction of oral absorbability in amorphous pharmaceuticals. J Pharm Sci 101(11):4220–4230

    CAS  PubMed  Google Scholar 

  • Pajula K, Taskinen M, Lehto VP, Ketolainen J, Korhonen O (2010) Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol Pharm 7(3):795–804

    CAS  PubMed  Google Scholar 

  • Parks GS, Huffman HM, Cattor FR (1928) Studies on glass. II: the transition between the glassy and liquid states in the case of glucose. J Phys Chem 32:1366–1379

    CAS  Google Scholar 

  • Parks GS, Snyder LJ, Cattoir FR (1934) Studies on glass. XI: some thermodynamic relations of glassy and alpha-crystalline glucose. J Chem Phys 56:595–598

    Google Scholar 

  • Paudel A, Van Humbeeck J, Van den Mooter G (2010) Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm 7(4):1133–1148

    CAS  PubMed  Google Scholar 

  • Phuoc NH, Luu RPT, Munafo A, Ruelle P, Namtran H, Buchmann M, Kesselring UW (1986) Determination of partial solubility parameters of lactose by gas solid chromatography. J Pharm Sci 75(1):68–72

    Google Scholar 

  • Qian F, Huang J, Hussain MA (2010a) Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99(7):2941–2947

    CAS  PubMed  Google Scholar 

  • Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, Hussain M (2010b) Is a distinctive single T-g a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm 395(1–2):232–235

    CAS  PubMed  Google Scholar 

  • Raghavan SL, Trividic A, Davis AF, Hadgraft J (2001) Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm 212(2):213–221

    CAS  PubMed  Google Scholar 

  • Reismann S, Lee G (2012) Assessment of a five-layer laminate technique to measure the saturation solubility of drug in pressure-sensitive adhesive film. J Pharm Sci 101(7):2428–2438

    CAS  PubMed  Google Scholar 

  • Reuteler-Faoro D, Ruelle P, Namtran H, Dereyff C, Buchmann M, Negre JC, Kesselring UW (1988) A new equation for calculating partial cohesion parameters of solid substances from solubilities. J Phys Chem 92(21):6144–6148

    CAS  Google Scholar 

  • Roy SD, Flynn GL (1989) Solubility behavior of narcotic analgesics in aqueous media: solubilities and dissociation constants of morphine, fentanyl and sufentanil. Pharm Res 6(2):147–151

    CAS  PubMed  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  • Rumondor ACF, Taylor LS (2010) Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm 7(2):477–490

    CAS  PubMed  Google Scholar 

  • Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS (2009) Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm 6(5):1492–1505

    CAS  PubMed  Google Scholar 

  • Rumondor ACF, Wikstrom H, Van Eerdenbrugh B, Taylor LS (2011) Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture. Aaps Pharm 12(4):1209–1219

    CAS  Google Scholar 

  • Savolainen M, Kogermann K, Heinz A, Aaltonen J, Peltonen L, Strachan C, Yliruusi J (2009) Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy. Eur J Pharm Biopharm 71(1):71–79

    CAS  PubMed  Google Scholar 

  • Sekiguchi K, Obi N (1961) Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull 9(11):866–872

    CAS  Google Scholar 

  • Sekikawa H, Nakano M, Arita T (1978) Inhibitory effect of polyvinylpyrrolidone on crystallization of drugs. Chem Pharm Bull 26(1):118–126

    CAS  Google Scholar 

  • Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88(10):1058–1066

    CAS  PubMed  Google Scholar 

  • Sethia S, Squillante E (2003) Solid dispersions: revival with greater possibilities and applications in oral drug delivery. Critic Rev Ther Drug Carrier Syst 20(2–3):215–247

    CAS  Google Scholar 

  • Shamblin SL, Huang EY, Zografi G (1996) The effects of co-lyophilized polymeric additives on the glass transition temperature and crystallization of amorphous sucrose. J Therm Anal 47(5):1567–1579

    CAS  Google Scholar 

  • Shamblin SL, Taylor LS, Zografi G (1998) Mixing behavior of colyophilized binary systems. J Pharm Sci 87(6):694–701

    CAS  PubMed  Google Scholar 

  • Shamblin SL, Tang XL, Chang LQ, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B 103(20):4113–4121

    CAS  Google Scholar 

  • Sheng Q, Weuts I, De Cort S, Stokbroekx S, Leemans R, Reading M, Belton P, Craig DQM (2010) An investigation into the crystallisation behaviour of an amorphous cryomilled pharmaceutical material above and below the glass transition temperature. J Pharm Sci 99(1):196–208

    Google Scholar 

  • Simha R, Boyer R (1962) On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys 37:185–192

    Google Scholar 

  • Sun YE, Tao J, Zhang GGZ, Yu L (2010) Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci 99(9):4023–4031

    CAS  PubMed  Google Scholar 

  • Surana R, Pyne A, Rani M, Suryanarayanan R (2005) Measurement of enthalpic relaxation by differential scanning calorimetry—effect of experimental conditions. Thermochim Acta 433(1–2):173–182

    CAS  Google Scholar 

  • Saad M, Poulain M (1987) Glass forming ability criterion. Mater Sci Forum 19(20):11–18

    Google Scholar 

  • Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S (1999) Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int J Pharm 181(2):143–151

    CAS  PubMed  Google Scholar 

  • Tao J, Sun Y, Zhang GGZ, Yu L (2009) Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res 26(4):855–864

    CAS  PubMed  Google Scholar 

  • Taylor LS, Zografi G (1998) Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. J Pharm Sci 87(12):1615–1621

    CAS  PubMed  Google Scholar 

  • ten Brinke G, Oudhuis L, Ellis TS (1994) The thermal characterization of multicomponent systems by enthalpy relaxation. Thermochim Acta 238:75–98

    CAS  Google Scholar 

  • Thakral S, Thakral NK (2013) Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci 102(7):2254–2263

    CAS  PubMed  Google Scholar 

  • Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP (2013) Construction of drug-polymer thermodynamic phase diagrams using flory-huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm 10(1):236–248

    CAS  PubMed  Google Scholar 

  • Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phy 10(5):473–488

    CAS  Google Scholar 

  • Uhlmann DR (1972) A kinetic treatment of glass formation. J Non-Cryst Solids 7(4):337–348

    CAS  Google Scholar 

  • Van den Mooter G, Augustijns P, Kinget R (1999) Stability prediction of amorphous benzodiazepines by calculation of the mean relaxation time constant using the Williams-Watts decay function. Eur J Pharm Biopharm 48(1):43–48

    PubMed  Google Scholar 

  • Van Eerdenbrugh B, Baird JA, Taylor LS (2010) Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation-classification and comparison with crystallization tendency from undercooled melts. J Pharm Sci 99(9):3826–3838

    CAS  PubMed  Google Scholar 

  • Van Krevelen DW (1997) Cohesive properties and solubility. In: Van Krevelen DW (ed) Properties of polymers. Their correlation with chemical structure: their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam, pp 189–225

    Google Scholar 

  • Vasanthavada M, Tong WQ, Joshi Y, Kislalioglu MS (2005) Phase behavior of amorphous molecular dispersions—II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm Res 22(3):440–448

    CAS  PubMed  Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12(23–24):1068–1075

    CAS  PubMed  Google Scholar 

  • Warren DB, Benameur H, Porter CJH, Pouton CW (2010) Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target 18(10):704–731

    CAS  PubMed  Google Scholar 

  • Weinberg MC (1994) Glass-forming ability and glass stability in simple systems. J Non-Cryst Solids 167(1–2):81–88

    CAS  Google Scholar 

  • Whichard G, Day DE (1984) Glass-formation and properties in the gallia-calcia system. J Non-Cryst Solids 66(3):477–487

    CAS  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1):315–499

    PubMed  Google Scholar 

  • Wiranidchapong C, Tucker IG, Rades T, Kulvanich P (2008) Miscibility and Interactions between 17-estradiol and Eudragit ® RS in Solid Dispersion. J Pharm Sci 97(11):4879–4888

    CAS  PubMed  Google Scholar 

  • Wyttenbach N, Janas C, Siam M, Lauer ME, Jacob L, Scheubel E, Page S (2013) Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems. Eur J Pharm Biopharm 84(3):583–598

    CAS  PubMed  Google Scholar 

  • Yang M, Gogos CG, Wang P (2001) A new systematic methodology to determine drug’s solubility in polymer. pp 1354–1359

    Google Scholar 

  • Yokoi Y, Yonemochi E, Terada K (2005) Effects of sugar ester and hydroxypropyl methylcellulose on the physicochemical stability of amorphous cefditoren pivoxil in aqueous suspension. Int J Pharm 290(1–2):91–99

    CAS  PubMed  Google Scholar 

  • Yoo SU, Krill SL, Wang Z, Telang C (2009) Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci 98(12):4711–4723

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Hancock BC, Zografi G (1994) Crystallization of indomethacin from the amorphous state below and above its glass-transition temperature. J Pharm Sci 83(12):1700–1705

    CAS  PubMed  Google Scholar 

  • Zhao YY, Inbar P, Chokshi HP, Malick AW, Choi DS (2011) Prediction of the thermal phase diagram of amorphous solid dispersions by flory-huggins theory. J Pharm Sci 100(8):3196–3207

    CAS  PubMed  Google Scholar 

  • Zheng WJ, Jain A, Papoutsakis D, Dannenfelser RM, Panicucci R, Garad S (2012) Selection of oral bioavailability enhancing formulations during drug discovery. Drug Dev Ind Pharm 38(2):235–247

    CAS  PubMed  Google Scholar 

  • Zhou DL, Zhang GGZ, Law D, Grant DJW, Schmitt EA (2002) Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci 91(8):1863–1872

    CAS  PubMed  Google Scholar 

  • Zimper U, Aaltonen J, McGoverin C, Gordon K, Krauel-Goellner K, Rades T (2010) Quantification of process induced disorder in milled samples using different analytical techniques. Pharmaceutics 2(1):30–49

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Laitinen, R. et al. (2014). Theoretical Considerations in Developing Amorphous Solid Dispersions. In: Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A. (eds) Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1598-9_2

Download citation

Publish with us

Policies and ethics