Skip to main content

Stability of Amorphous Solid Dispersion

  • Chapter
  • First Online:
Amorphous Solid Dispersions

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Amorphous solid dispersion (ASD) has attracted tremendous attention in pharmaceutical development due to its characteristic solubility enhancement, thus positively affecting oral bioavailability of a range of hydrophobic drugs. Nevertheless, being in a metastable state, ASD has the intrinsic tendency of spontaneously reverting to a more stable crystalline state due to both thermodynamic and kinetic driving forces, making it challenging to the successful development of an ASD dosage form. In this chapter, factors that affect the stability of ASD are reviewed and methods of physical and chemical characterization as well as approaches applicable for stability predictions are discussed. Finally, some practical stability programs that are suitable at different stages of pharmaceutical research and development are introduced. The focus of this chapter is on physical stability of ASD with its chemical stability aspect briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MA, Ali R, Al-Jenoobi FI, Al-Mohizea AM (2012) Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates. Expert Opin Drug Deliv 9(11):1419–1440

    Article  CAS  PubMed  Google Scholar 

  • Andronis V, Zografi G (1997) Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm Res 14(4):410–414

    Article  CAS  PubMed  Google Scholar 

  • Andronis V, Zografi G (1998) The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm Res 15(6):835–842

    Article  CAS  PubMed  Google Scholar 

  • Andronis V, Yoshioka M, Zografi G (1997) Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J Pharm Sci 86(3):346–351

    Article  CAS  PubMed  Google Scholar 

  • Aso Y, Yoshioka S (2006) Molecular mobility of nifedipine–PVP and phenobarbital–PVP solid dispersions as measured by 13 C-NMR spin-lattice relaxation time. J Pharm Sci 95(2):318–325

    Article  CAS  PubMed  Google Scholar 

  • Aso Y, Yoshioka S, Kojima S (2004) Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J Pharm Sci 93(2):384–391

    Article  CAS  PubMed  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99(9):3787–3806

    CAS  PubMed  Google Scholar 

  • Bhattacharya S, Suryanarayanan R (2009) Local mobility in amorphous pharmaceuticals—characterization and implications on stability. J Pharm Sci 98(9):2935–2953

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Pikal MJ (2008) Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97(4):1329–1349

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Shmeis R, Krill S, Pikal M (2006) Predictions of onset of crystallization from experimental relaxation times I-Correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition. Pharm Res 23(10):2277–2290

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Shmeis R, Pikal MJ (2008) Role of mechanical stress in crystallization and relaxation behavior of amorphous indomethacin. J Pharm Sci 97(10):4446–4458

    Article  CAS  PubMed  Google Scholar 

  • Bikiaris DN (2011) Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 8(11):1501–1519

    Article  CAS  PubMed  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharm applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302

    Article  CAS  PubMed  Google Scholar 

  • Craig DQM, Royall PG, Kett VL, Hopton ML (1999) The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm 179(2):179–207

    Article  CAS  PubMed  Google Scholar 

  • Ghebremeskel AN, Vemavarapu C, Lodaya M (2006) Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: stability testing of selected solid dispersions. Pharm Res 23(8):1928–1936

    Article  CAS  PubMed  Google Scholar 

  • Ghosh I, Snyder J, Vippagunta R, Alvine M, Vakil R, Tong W-Q et al (2011) Comparison of HPMC based polymers performance as carriers for manufacture of solid dispersions using the melt extruder. Int J Pharm 419(1–2):12–9

    Article  CAS  PubMed  Google Scholar 

  • Giovambattista N, Angell CA, Sciortino F, Stanley HE (2004) Glass-transition temperature of water: a simulation study. Phys Rev Lett 93(4):047801

    Article  PubMed  Google Scholar 

  • Graeser KA, Patterson JE, Rades T (2009a) Applying thermodynamic and kinetic parameters to predict the physical stability of two differently prepared amorphous forms of simvastatin. Curr Drug Deliv 6(4):374–382

    Article  CAS  PubMed  Google Scholar 

  • Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T (2009b) Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci 37(3–4):492–498

    Article  CAS  PubMed  Google Scholar 

  • Greco S, Authelin J-R, Leveder C, Segalini A (2012) A practical method to predict physical stability of amorphous solid dispersions. Pharm Res 29(10):2792–2805

    Article  CAS  PubMed  Google Scholar 

  • Gupta J, Nunes C, Vyas S, Jonnalagadda S (2011) Prediction of solubility parameters and miscibility of pharm compounds by molecular dynamics simulations. J Phys Chem B 115(9):2014–2023

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Shamblin SL (2001) Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochimica Acta 380(2):95–107

    Article  CAS  Google Scholar 

  • Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Hancock B, Shamblin S, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12(6):799–806

    Article  CAS  PubMed  Google Scholar 

  • James PF (1985) Kinetics of crystal nucleation in silicate glasses. J Non-Crystalline Solids 73(1–3):517–540

    Article  CAS  Google Scholar 

  • Kakumanu VK, Bansal AK (2002). Enthalpy relaxation studies of celecoxib amorphous mixtures. Pharm Res 19(12):1873–1878

    Article  CAS  PubMed  Google Scholar 

  • Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43(2):219–256

    Article  CAS  Google Scholar 

  • Kojima T, Higashi K, Suzuki T, Tomono K, Moribe K, Yamamoto K (2012) Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT® EPO. Pharm Res 29(10):2777–2791

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Taylor LS (2006) Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 95(12):2692–2705

    Article  CAS  PubMed  Google Scholar 

  • Korhonen O, Bhugra C, Pikal MJ (2008) Correlation between molecular mobility and crystal growth of amorphous phenobarbital and phenobarbital with polyvinylpyrrolidone and L-proline. J Pharm Sci 97(9):3830–3841

    Article  CAS  PubMed  Google Scholar 

  • Lauer M, Grassmann O, Siam M, Tardio J, Jacob L, Page S et al (2011) Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions. Pharm Res 28(3):572–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Rigsbee DR, Stotz C, Pikal MJ (2002) Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J Pharm Sci 91(8):1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang X, Suwardie H, Wang P, Gogos CG (2012) Miscibility studies of indomethacin and Eudragit® E PO by thermal, rheological, and spectroscopic analysis. J Pharm Sci 101(6):2204–2212

    Article  CAS  PubMed  Google Scholar 

  • Mahlin D, Ponnambalam S, Hockerfelt MH, Bergstrom CA (2011) Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development. Mol Pharm 8(2):498–506

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Chamarthy SP, Pinal R (2006a) Time-dependence of molecular mobility during structural relaxation and its impact on organic amorphous solids: an investigation based on a calorimetric approach. Pharm Res 23(8):1906–1917

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Prasanth Chamarthy S, Byrn SR, Pinal R (2006b) A calorimetric method to estimate molecular mobility of amorphous solids at relatively low temperatures. Pharm Res 23(10):2269–2276

    Article  CAS  PubMed  Google Scholar 

  • Marsac P, Konno H, Taylor L (2006a) A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res 23(10):2306–2316

    Article  CAS  PubMed  Google Scholar 

  • Marsac P, Shamblin S, Taylor L (2006b) Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res 23(10):2417–2426

    Article  CAS  PubMed  Google Scholar 

  • Marsac P, Li T, Taylor L (2009) Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 26(1):139–151

    Article  CAS  PubMed  Google Scholar 

  • Masuda K, Tabata S, Sakata Y, Hayase T, Yonemochi E, Terada K (2005) Comparison of Molecular Mobility in the Glassy State Between Amorphous Indomethacin and Salicin Based on Spin-Lattice Relaxation Times. Pharm Res 22(5):797–805

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Zografi G (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res 16(11):1722–1728

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Yoshioka S, Aso Y, Kojima S (2004) Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 93(11):2710–2717

    Article  CAS  PubMed  Google Scholar 

  • Miller D, Lechuga-Ballesteros D (2006) Rapid assessment of the structural relaxation behavior of amorphous pharmaceutical solids: effect of residual water on molecular mobility. Pharm Res 23(10):2291–2305

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Beig A, Carr RA, Spence JK, Dahan A (2012) A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm 9(7):2009–2016

    Article  CAS  PubMed  Google Scholar 

  • Miyanishi H, Nemoto T, Mizuno M, Mimura H, Kitamura S, Iwao Y, Noguchi S, Itai S (2012) Evaluation of Crystallization Behavior on the Surface of Nifedipine Solid Dispersion Powder Using Inverse Gas Chromatography. Pharm Res 30(2):502–511

    Google Scholar 

  • Miyazaki T, Yoshioka S, Aso Y, Kawanishi T (2007) Crystallization rate of amorphous nifedipine analogues unrelated to the glass transition temperature. Int J Pharm 336(1):191–195

    Article  CAS  PubMed  Google Scholar 

  • Mosquera-Giraldo LI, Trasi NS, Taylor LS (2013) Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm 461(1–2):251–257

    PubMed  Google Scholar 

  • Nascimento ML, Zanotto ED (2010) Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? J Chem Phys 133(17):174701

    Article  PubMed  Google Scholar 

  • Newman A, Knipp G, Zografi G (2012) Assessing the performance of amorphous solid dispersions. J Pharm Sci 101(4):1355–77

    Article  CAS  PubMed  Google Scholar 

  • Padilla AM, Ivanisevic I, Yang Y, Engers D, Bogner RH, Pikal MJ (2011) The study of phase separation in amorphous freeze-dried systems. part I: Raman mapping and computational analysis of XRPD data in model polymer systems. J Pharm Sci 100(1):206–222

    Article  CAS  PubMed  Google Scholar 

  • Paudel A, Nies E, Van den Mooter G (2012) Relating hydrogen-bonding interactions with the phase behavior of naproxen/pvp k 25 solid dispersions: evaluation of solution-cast and quench-cooled films. Mol Pharm 9(11):3301–3317

    Article  CAS  PubMed  Google Scholar 

  • Pikal MJ, Dellerman KM (1989) Stability testing of pharmaceuticals by high-sensitivity isothermal calorimetry at 25 ℃: cephalosporins in the solid and aqueous solution states. Int J Pharm 50(3):233–252

    Article  CAS  Google Scholar 

  • Qi S, Roser S, Edler KJ, Pigliacelli C, Rogerson M, Weuts I et al (2013) Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharm Res 30(1):290–302

    Article  PubMed  Google Scholar 

  • Qian F, Huang J, Hussain MA (2010) Drug-polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99(7):2941–2947

    CAS  PubMed  Google Scholar 

  • Qian F, Wang J, Hartley R, Tao J, Haddadin R, Mathias N et al (2012) Solution behavior of PVP-VA and HPMC-AS-Based amorphous solid dispersions and their bioavailability implications. Pharm Res 29(10):2766–2776

    Article  CAS  Google Scholar 

  • Rumondor ACF, Taylor LS (2009) Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm 7(2):477–490

    Article  Google Scholar 

  • Rumondor AF, Ivanisevic I, Bates S, Alonzo D, Taylor L (2009) Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res 26(11):2523–2534

    Article  CAS  PubMed  Google Scholar 

  • Rumondor ACF, Konno H, Marsac PJ, Taylor LS (2010) Analysis of the moisture sorption behavior of amorphous drug–polymer blends. J Appl Polym Sci 117(2):1055–1063

    Article  CAS  Google Scholar 

  • Salameh AK, Taylor LS (2005) Deliquescence in binary mixtures. Pharm Res 22(2):318–324

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88(10):1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Shamblin SL, Hancock BC, Pikal MJ (2006) Coupling between chemical reactivity and structural relaxation in pharmaceutical glasses. Pharm Res 23(10):2254–2268

    Article  CAS  PubMed  Google Scholar 

  • Shibata Y, Fujii M, Suzuki A, Koizumi N, Kanada K, Yamada M et al (2014) Effect of storage conditions on the recrystallization of drugs in solid dispersions with crospovidone. Pharm Dev Technol 19(4):468–474

    Article  CAS  PubMed  Google Scholar 

  • Siew A, Arnum PV (2013) Industry perspectives: achieving solutions for the challenge of poorly water-soluble drugs. Pharma Technol 37(6):60–62, 66

    Google Scholar 

  • Six K, Verreck G, Peeters J, Augustijns P, Kinget R, Van den Mooter G (2001) Characterization of glassy itraconazole: a comparative study of its molecular mobility below T(g) with that of structural analogues using MTDSC. Int J Pharm 213(1–2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Tao J, Zhang GGZ, Yu L (2010) Solubilities of crystalline drugs in polymers: An improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 99(9):4023–4031

    CAS  PubMed  Google Scholar 

  • Tang XC, Pikal MJ, Taylor LS (2002) The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers. Pharm Res 19(4):484–490

    Article  CAS  PubMed  Google Scholar 

  • Tao J, Sun Y, Zhang GGZ, Yu L (2009) Solubility of small-molecule crystals in polymers: d-Mannitol in PVP, Indomethacin in PVP/VA, and Nifedipine in PVP/VA. Pharm Res 26(4):855–864

    Article  CAS  PubMed  Google Scholar 

  • Taylor LS, Shamblin SL (2009) Amorphous solids. In: Polymorphism in pharmaceutical solids, 2nd edn. Informa healthcare, New York, pp 587–630

    Google Scholar 

  • Taylor L, Zografi G (1997) Spectroscopic characterization of interactions between PVP and Indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Taylor LS, Langkilde FW, Zografi G (2001) Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers. J Pharm Sci 90(7):888–901

    Article  CAS  PubMed  Google Scholar 

  • Tran P-L, Tran T-D, Park J, Lee B-J (2011) Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res 28(10):2353–2378

    Article  CAS  PubMed  Google Scholar 

  • Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J of Chem Phys 17(1):71–73

    Article  CAS  Google Scholar 

  • Ueda K, Higashi K, Limwikrant W, Sekine S, Horie T, Yamamoto K et al (2012) Mechanistic differences in permeation behavior of supersaturated and solubilized solutions of carbamazepine revealed by nuclear magnetic resonance measurements. Mol Pharm 9(11):3023–3033

    Article  CAS  PubMed  Google Scholar 

  • Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P et al (2001) Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci 12(3):261–269

    Article  CAS  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Taylor LS (2011) An ab initiopolymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. CrystEngComm 13(20):6171–6178

    Article  CAS  Google Scholar 

  • Van Eerdenbrugh B, Lo M, Kjoller K, Marcott C, Taylor LS (2012) Nanoscale mid-infrared imaging of phase separation in a drug–polymer blend. J Pharm Sci 101(6):2066–2073

    Article  CAS  PubMed  Google Scholar 

  • Vasanthavada M, Tong W-Q, Joshi Y, Kislalioglu MS (2004) Phase behavior of amorphous molecular dispersions i: determination of the degree and mechanism of solid solubility. Pharm Res 21(9):1598–1606

    Article  CAS  PubMed  Google Scholar 

  • Vasanthavada M, Tong W-Q, Joshi Y, Kislalioglu MS (2005) Phase behavior of amorphous molecular dispersions ii: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm Res 22(3):440–448

    Article  CAS  PubMed  Google Scholar 

  • Verreck G, Six K, Van den Mooter G, Baert L, Peeters J, Brewster ME (2003) Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion—part I. Int J Pharm 251(1–2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Vyazovkin S, Dranca I (2005) Physical stability and relaxation of amorphous indomethacin. J Phys Chem B 109(39):18637–18644

    Article  CAS  PubMed  Google Scholar 

  • Vyazovkin S, Dranca I (2007) Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B 111(25):7283–7287

    Article  CAS  PubMed  Google Scholar 

  • Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS (2013) Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers. J Pharm Sci 102(1):171–184

    Article  CAS  PubMed  Google Scholar 

  • Weuts I, Kempen D, Decorte A, Verreck G, Peeters J, Brewster M et al (2005) Physical stability of the amorphous state of loperamide and two fragment molecules in solid dispersions with the polymers PVP-K30 and PVP-VA64. Eur J Pharm Sci 25(2–3):313–320

    Article  CAS  PubMed  Google Scholar 

  • Yoo SU, Krill SL, Wang Z, Telang C (2009) Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci 98(12):4711–4723

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Hancock BC, Zografi G (1994) Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 83(12):1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Sperger D, Munson EJ (2013) Investigating miscibility and molecular mobility of nifedipine-pvp amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm 11(1):329–337

    Article  PubMed  Google Scholar 

  • Zhu Q, Taylor LS, Harris MT (2010) Evaluation of the microstructure of semicrystalline solid dispersions. Mol Pharm 7(4):1291–1300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Quanying Bao at Novartis for useful discussions and her help with the proof reading.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Kou, X., Zhou, L. (2014). Stability of Amorphous Solid Dispersion. In: Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A. (eds) Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1598-9_16

Download citation

Publish with us

Policies and ethics